
UNIT 2

 Character Set, Identifiers and keywords, Data types, Constants, Variables.

 Operators: Arithmetic, Relational and logical, Assignment, Unary, Conditional,
Bitwise, Comma, other operators.

 Expression, statements, Library Functions, Preprocessor.

 Data Input and Output: getchar(), putchar(), scanf(), printf(), gets(), puts(),
Structure of C program .

2.1 C character set

As every language contains a set of characters used to construct words, statements,

C language also has a set of characters which include alphabets, digits, and special

symbols.

C language supports a total of 256 characters. Every C program contains

statements. These statements are constructed using words and these words are

constructed using characters from C character set. C language character set

contains the following set of characters.

1. Alphabets
2. Digits
3. Special Symbols

Alphabets

C language supports all the alphabets from the English language. Lower and upper
case letters together support 52 alphabets.

Lower case letters - a to z

UPPER CASE LETTERS - A to Z

Digits

C language supports 10 digits which are used to construct numerical values in C

language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

C language supports a rich set of special symbols that include symbols to perform

mathematical operations, to check conditions, white spaces, backspaces, and other

special symbols.

Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ | tab newline
space NULL bell backspace verticaltab etc.,

Every character in C language has its equivalent ASCII (American Standard Code
for Information Interchange) value.

2.2 Identifier

Identifier refers to the name of the variable, function, array, structure. These are user

defined names that are used to make program and consists of characters and digits.

During the programming user declares various identifiers that serve an important

part for the solution of the given problem.

Naming Rules for Identifiers

1. Identifiers may only include the following characters: letters ('a'..'z', 'A'..'Z'), digits
('0'..'9') and underscores ('_'). C is case sensitive, so seaside, SeaSide and
SEASIDE are distinct identifiers.

2. The first character must not be a digit. It must be an alphabet or underscore.
3. The identifier must not be one of C's 32 keywords.
4. only first 31 characters are significant.
5. It must not have white spaces.

Example: number, number2, a, x,

2.3 Keywords

Key word plays an important role in every programming language. These are

reserved words have fixed meaning that cannot be changed by the programmer.

Whenever compiler encounters these keywords during the time of compilation, it

takes necessary action that is predefined. So keywords serve as basic building

blocks for programming statements.

 auto break case char

 const continue default do

 double else enum extern

 float for goto if

 int long register return

 short signed sizeof static

 struct switch typedef union

 unsigned void volatile while

2.4 Data types

C language is rich in data types. The fundamental data types which can be used in C
are integer data types, character data types and floating point data types. A
schematic representation of the various data types in C is given below

Each of the data types and their corresponding keywords are given in the table
below.

Integer data type is used to represent an integer-valued number. Character data type

represents one single alphabet or a single-digit integer. Each character type has an

equivalent integer representation. Integer and character data types can be

augmented by the use of the data type qualifiers, short, long, signed and unsigned.

Floating point data types are used to represent real numbers. Basic floating point

data type offers six digits of precision. Double precision data type can be used to

achieve a precision of 14 digits. To extend the precision furthermore, we may use

the extended double precision floating point data type.

DATA TYPES KEYWORD

Character Char

Unsigned Character unsigned char

Signed Character signed char

Signed Integer signed int (or int)

Signed Short Integer signed short int (or short int or short)

Signed Long Integer signed long int (or long int or long)

Unsigned Integer unsigned int (or unsigned)

Unsigned Short Integer unsigned short int (or unsigned short)

Unsigned Long Integer unsigned long int (or unsigned long)

Floating Point Float

Double Precision Floating Point double

Extended Double Precision Floating Point Long double

In the table below, the memory size required by each data type in bits and the range

of values they can possess are listed.

DATA TYPE SIZE in BITS RANGE

char or signed char 8 -128 to 127.

unsigned char 8 0 to 255.

int or signed int 16 -32768 to 32767.

unsigned int 16 0 to 65535.

short int or signed short int 8 -128 to 127.

unsigned short int 8 0 to 255.

long int or signed long int 32 -2,147,483,648 to 2,147,483,647.

unsigned long int 32 0 to 4,294,967,295.

float 32 3.4e-38 to 3.4e+38.

double 64 1.7e-308 to 1.7e+308.

long double 80 3.4e-4932 to 3.4e+4932.

2.5 Constants

In C programming language, a constant is similar to the variable but the constant

hold only one value during the program execution. That means, once a value is

assigned to the constant, that value can't be changed during the program execution.

Once the value is assigned to the constant, it is fixed throughout the program. A

constant can be defined as “It is a named memory location which holds only one

value throughout the program execution.”

Integer constant: An integer constant can be a decimal integer or octal integer or

hexadecimal integer. A decimal integer value is specified as direct integer value

whereas octal integer value is prefixed with 'o' and hexadecimal value is prefixed

with 'OX'.

Floating-point constant: A floating-point constant must contain both integer and

decimal parts. Sometimes it may also contain the exponent part.

Character constant: A character constant is a symbol enclosed in single quotation.

A character constant has a maximum length of one character.

String constant: A string constant is a collection of characters, digits, special

symbols and escape sequences that are enclosed in double quotations.

2.6 Variable

A variable data name that may be used to store data value .unlike constants that

remain unchanged during the execution of a program, a variable may take different

values at different types during execution. The syntax of the declaration of variables

using data type is:

data-type vname-1, vname-2,…..vname-n;

Where vname-1, vname-2, vname-n are variable names. Some examples for the

variable declaration are given below.

int number;

char a;

long double big-number;

A variable name can be chosen by the programmer for the meaningful way so as to

reflect to its function or nature in the program .Some examples of such names are:

Average

Height

Total

Counter_1

class_strength

As mentioned earlier, variable names may consist of letters, digits, and the

underscore(_) character subject to the following condition:

1. They must begin with letter .Some systems permit underscore as the first
character.

2. ANSI standard recognizes a length of 31 character, However, length should not
be normally for more than eight character, since only the first character are
treated as significant by many compilers.

3. It should not be a keyword.
4. While space not allowed.
5. Upper and lower case names are treated as different, as C is case-sensitive, so

it is suggested to keep the variable names in lower case.

Some example of valid and invalid variable names are as follows:

John Value T_raise

Delhi x1 Ph_value

Mark sum1 distance

InvalidExample Include:

123 %area 25TH

Further example of variable names and their correctness are given in table

Variable Name Valid? Remarks

First_tag Valid

char Not Valid char is a keyword

price$ Not Valid Dollar sign is illegal

group one Not Valid Blank space is not permitted

average_number Valid First eight character are significant

int_type Valid Keyword may be part of name

The distinction between declaration and definition is an important one, and it is a
shame that the two words sound alike enough to cause confusion. From now on they
will have to be used for their formal meaning, so if you are in doubt about the
differences between them, refer back to this point.

The rules about what makes a declaration into a definition are rather complicated, so
they will be deferred for a while. In the meantime, here are some examples and rule-
of-thumb guidelines which will work for the examples that we have seen so far, and
will do for a while to come.

2.7 Operators

C language supports a rich set of built-in operators. An operator is a symbol that tells

the compiler to perform a certain mathematical or logical manipulation. Operators are

used in programs to manipulate data and variables.

C operators can be classified into following types:

 Arithmetic operators

 Relational operators

 Logical operators

 Bitwise operators

 Assignment operators

 Conditional operators

 Special operators

Arithmetic operators

C supports all the basic arithmetic operators. The following table shows all the basic

arithmetic operators.

Operator Description

+ adds two operands

- subtract second operands from first

* multiply two operand

/ divide numerator by denominator

% remainder of division

++ Increment operator - increases integer value by one

-- Decrement operator - decreases integer value by one

Relational operators

The following table shows all relation operators supported by C.

Operator Description

== Check if two operand are equal

!= Check if two operand are not equal.

> Check if operand on the left is greater than operand on the right

< Check operand on the left is smaller than right operand

>= check left operand is greater than or equal to right operand

<= Check if operand on left is smaller than or equal to right operand

Logical operators

C language supports following 3 logical operators. Suppose a = 1 and b = 0,

Operator Description Example

&& Logical AND (a && b) is false

|| Logical OR (a || b) is true

! Logical NOT (!a) is false

Bitwise operators

Bitwise operators perform manipulations of data at bit level. These operators also
perform shifting of bits from right to left. Bitwise operators are not applied
to float or double.

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< left shift

>> right shift

Now lets see truth table for bitwise &, | and ^

A B A& B A | B A ^ B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

The bitwise shift operator, shifts the bit value. The left operand specifies the value to

be shifted and the right operand specifies the number of positions that the bits in the

value have to be shifted. Both operands have the same precedence.

Assignment Operators

Assignment operators supported by C language are as follows.

Operator Description Example

= assigns values from right side operands to left
side operand

a=b

+= adds right operand to the left operand and
assign the result to left

a+=b is same as
a=a+b

-= subtracts right operand from the left operand
and assign the result to left operand

a-=b is same as
a=a-b

*= mutiply left operand with the right operand and
assign the result to left operand

a*=b is same as
a=a*b

/= divides left operand with the right operand and
assign the result to left operand

a/=b is same as
a=a/b

%= calculate modulus using two operands and
assign the result to left operand

a%=b is same as
a=a%b

Conditional operator

The conditional operators in C language are known by two more names as Ternary
Operator and (? : Operator)

It is actually the if condition that we use in C language decision making, but using
conditional operator, we turn the if condition statement into a short and simple
operator.

The syntax of a conditional operator is :

expression 1 ? expression 2: expression 3

Explanation:

 The question mark "?" in the syntax represents the if part.

 The first expression (expression 1) generally returns either true or false,

based on which it is decided whether (expression 2) will be executed or

(expression 3)

 If (expression 1) returns true then the expression on the left side of " : " i.e

(expression 2) is executed.

 If (expression 1) returns false then the expression on the right side of " : " i.e

(expression 3) is executed.

Special operator

Operator Description Example

sizeof Returns the size of an variable sizeof(x) return size of the variable x

& Returns the address of an variable &x ; return address of the variable x

* Pointer to a variable *x ; will be pointer to a variable x

2.8 Expressions

Expressions in C are classified according to the operators used in them. The

classifications are

 Arithmetic expression.

 Relational expression.

 Logical expression.

Arithmetic Expressions

An expression is a combination of variables constants and operators written
according to the syntax of C language. In C every expression evaluates to a value
i.e., every expression results in some value of a certain type that can be assigned to
a variable.

Relational Expression

An expression containing a relational operator is termed as relational expression. In

an expression where there are arithmetic and relational operators present, the

arithmetic expressions will be evaluated first and then the results are compared.

Logical Expression

Logical expressions are the expressions where logical operators are used to

combine more than one relational expression. Logical expressions are also called

compound relational expressions. The logical operators used in C are && (logical

AND), || (logical OR), and ! (Logical NOT). Logical expressions also yields a value of

one or zero, and used in decision statements.

Format of a logical expression:

(rel-expression-1) logical operator (rel-expression-2)

Where rel-expression-1 and rel-expression-2 are relational expressions.

2.9 Preprocessor directives

Preprocessor is a program that processes the code before it passes through the

compiler. It operates under the control of preprocessor command lines and

directives. Preprocessor directives are placed in the source program before the main

line before the source code passes through the compiler it is examined by the

preprocessor for any preprocessor directives. If there is any appropriate actions are

taken then the source program is handed over to the compiler.

Preprocessor directives are lines included in the code of our programs that are not

program statements but directives for the preprocessor. These lines are always

preceded by a hash sign (#). The preprocessor is executed before the actual

compilation of code begins, therefore the preprocessor digests all these directives

before any code is generated by the statements.

These preprocessor directives extend only across a single line of code. No

semicolon (;) is expected at the end of a preprocessor directive. A unique feature of c

language is the preprocessor. A program can use the tools provided by preprocessor

to make his program easy to read, modify, portable and more efficient.

The C preprocessor provides four separate facilities that you can use as you see fit:

 Inclusion of header files. These are files of declarations that can be
substituted into your program.

 Macro expansion. You can define macros, which are abbreviations for
arbitrary fragments of C code, and then the C preprocessor will replace the
macros with their definitions throughout the program.

 Conditional compilation. Using special preprocessing directives, you can
include or exclude parts of the program according to various conditions.

 Line control. If you use a program to combine or rearrange source files into an
intermediate file which is then compiled, you can use line control to inform the
compiler of where each source line originally came from.

Types of Preprocessor directives:

Directive

Function

#define Defines a macro substitutio

#undef Undefines a macro

#include Specifies a file to be included

#ifdef Tests for macro definition

#endif Specifies the end of #if

#ifndef Tests whether the macro is not def

#if Tests a compile time condition

#else Specifies alternatives when # if test fails

2.10 Concept of library functions and header files

Library functions are those functions that are stored in the one of the library header

files and can be used directly in the source code after including particular header file

in the source code. Libraries for use by C programs really consist of two parts:

1. Header files that define types and macros and declare variables and functions

2. Actual library or archive that contains the definitions of the variables and functions.

In order to use the facilities in the C library, you should be sure that your program

source files include the appropriate header files. This is so that the compiler has

declarations of these facilities available and can correctly process references to

them. Once your program has been compiled, the linker resolves these references to

the actual definitions provided in the archive file. Every header file has some name

and followed by file extension (.h)

Header files are included into a program source file by the ‘#include’ preprocessor

directive as

#include<stdio.h>

Typically, ‘#include’ directives are placed at the top of the C source file, before any

other code. If you begin your source files with some comments explaining what the

code in the file does, put the ‘#include’ directives immediately after comments.

The #include preprocessor directive comes in two flavors:

#include <filename>

#include "filename"

The use of angle brackets <> informs the compiler to search the compiler’s include

directories for the specified file. The use of the double quotes "" around the filename

informs the compiler to start the search in the current directory for the specified file.

Examples of popular header files in C language are as follows:

 #include <string.h> contains string manipulation functions

 #include <math.h> contains mathematical functions

 #include<time.h> contains time manipulation functions

2.11 Console input and output functions(printf () and scanf()

For interacting with basic console input device(Keyboard) and basic output device

(monitor) there are two console input/output standard library functions that are

defined in stdio.h header file as

 printf()- formatted console output function

 scanf()- formatted console input function

Descriptions of these functions are as follows:

1. printf ()

Its arguments are, in order; a control string, which controls what get printed, followed

by a list of values to be substituted for entries in the control string. The prototype for

the printf() is:

int printf(“control string”, argument list);

This function returns number of characters printed on to the standard output device.

where the control string consists of 1) literal text to be displayed, 2) format specifies,

and 3)special characters. The arguments can be variables, constants, expressions,

or function calls -- anything that produces a value which can be displayed. Number

of arguments must match the number of format identifiers. Unpredictable results if

argument type does not “match” the identifier.

The following table show what format specifiers should be used with what data

types:

Some of the special characters as shown in the table-

Example :

2. scanf ()

This function is used to get data from the standard input device(keyboard). The

general syntax for this function is as follows:

int scanf(“control string”, addresses of variables);

The control string specifies the field format which includes format specifications (as

applied for printf() function) and optional number specifying field width and the

conversion character % and also blanks tabs and new lines.

The Blanks tabs and new lines are ignored by compiler. The conversion character %

is followed by the type of data that is to be assigned to variable of the assignment.

The field width specifier is optional.

Example :

scanf(“%d %d”, &sum1,&sum2);

2.12 Type Conversion

Type conversion is the process of converting data in one type in to another type.
This process of conversion can be done by two ways;

 Implicit Type Conversion

 Explicit Type Conversion

Implicit type conversion
C permits mixing of constants and variables of different types in an expression. C

automatically converts any intermediate values to the proper type so that the

expression can be evaluated without loosing any significance. This automatic type

conversion is know as implicit type conversion

If the operands are of different types the lower type is automatically converted to the

higher type before the operation proceeds. The result is of higher type.

The final result is converted to the type of the variable on the left side of the

assignment operator before assigning the value to it.

Rule for implicit type conversion;

1. float to integer causes truncation of fractional part.
2. double to float causes rounding of numbers.
3. long integer to integer causes dropping of excess higher order bits.

Explicit Conversion

Many times there may be a situation where we want to force a type conversion in a

way that is different from automatic conversion. Consider for example the calculation

of number of female and male students in a class.

........................ female_students

Ratio =..-------------------

........................ male_students

Since if female_students and male_students are declared as integers, the decimal

part will be rounded off and its ratio will represent a wrong figure. This problem can

be solved by converting locally one of the variables to the floating point as shown

below.

Ratio = (float) female_students / male_students

The operator float converts the female_students to floating point for the purpose of

evaluation of the expression. Then using the rule of automatic conversion, the

division is performed by floating point mode, thus retaining the fractional part of the

result. The process of such a local conversion is known as explicit conversion or

casting a value. The general form is

(type_name) expression

2.13 Comments

Comments are a way of inserting remarks and reminders into code without affecting

its behavior. Since comments are only read by other humans, you can put anything

you wish to in a comment, but it is better to be informative than humorous.

The compiler ignores comments, treating them as though they were white space

(blank characters, such as spaces, tabs, or carriage returns), and they are

consequently ignored. During compilation, comments are simply stripped out of the

code, so programs can contain any number of comments without losing speed.

Because a comment is treated as white space, it can be placed anywhere white

space is valid, even in the middle of a statement. (Such a practice can make your

code difficult to read, however.) . There are two ways to write comment in the source

file

 Single line Comments- This type of comments starts with // and end till end
of the line.

 Multi line Comments: Any text sandwiched between /* and */ in C code is a
 comment. Here is an example of a C comment:

 /* comment*/

Comments do not necessarily terminate at the end of a line, only with the characters

*/. If you forget to close a comment with the characters */, the compiler will display an

exterminated comment error when you try to compile your code.

Example:

// This is a single line comment
/*
 * This is a mult-line
 * comment.

2.14 Statements and Blocks

An expression such as x = 0 or i++ or printf (...) becomes a statement when it is

followed by a semicolon, as in

x = 0;

i++;

printf (...);

In C, the semicolon is a statement terminator. Braces {and} are used to group

declarations and statements together into a compound statement, or block, so that

they are syntactically equivalent to a single statement. The braces that surround the

statements of a function are one obvious example; braces around multiple

statements after an if, else, while, or for. There is no semicolon after the right brace

that ends a block.

2.15 Basic structure of C Program

Following is the basic structure of a C program.

Documentation

Consists of comments, some description of the program,

programmer name and any other useful points that can be

referenced later.

Link
Provides instruction to the compiler to link function from the

library function.

Definition Consists of symbolic constants.

Global

declaration
Consists of function declaration and global variables.

main()

{

}

Every C program must have a main() function which is the

starting point of the program execution.

Subprograms User defined functions.

Example

/*
 * file: circle.c
 * author: Harish Tiwari
 * date: 2020-01-29
 * description: program to find the area of a circle using the radius r
 */

#include <stdio.h> //Link Section for including header file.

#define PI 3.1416 //Symbolic Constant

float area(float r); //global declaration section

int main(void) // main Function Section
{
 float r = 10;
 printf("Area: %.2f", area(r));
 return 0;
}

float area(float r) { //subprograms Section
 return PI * r * r;
}

