

Lab Manual

For

Operating System

(CT-257)

(CS-2014)

Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING

SIR PADAMPAT SINGHANIA UNIVERSITY, UDAIPUR

(RAJASTHAN)

Developed By-

Harish Tiwari
Assistant Professor
Department of CSE

School of Engineering
Sir Padampat Singhania University, Udaipur

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 2

1. Introduction to subject
The goal of this lab Manual is to provide you the basic information about the operating

System. This lab manual comprises all information for the student about the lab like, course

outline, Reference book list, evaluation criteria, Marks distribution, and guide line for the

student, formats and index and program in the Lab record.

2. Objective of the Subject

An operating system is a program that controls the execution of application programs and

acts as an interface between the user of a computer and the computer hardware. In other

words” The software that controls the hardware”. Some examples of operating systems are

UNIX, MS-DOS, MS Windows, Windows/NT, MacOS. Objectives of the operating system

are as follows.

 Convenience – An operating system makes a computer more convenient to use.

 Efficiency – An operating system allows the computer system resources to be used

in an efficient manner.

 Ability to evolve – An operating system should permit the effective development,

testing, and introduction of new system function without interfering with the service.

Services provided by the operating system are as follows.

 Implementing the user interface

 Sharing hardware among users

 Allowing users to share data among themselves

 Preventing users from interfering with one another

 Scheduling resources among users

 Facilitating input/output

 Recovering from errors

 Accounting for resource usage

 Facilitating parallel operations

 Organizing data for secure and rapid access

 Handling network communications.

3. Lab Objective
This manual is used to provide an understanding of the design aspects of operating system.

This manual is useful to Study the operating systems functioning and internals and

implementation of concepts using C programming language. Student will also gain some

understanding of the principles of good program design and program testing.

4. Laboratory Outcome:

At the end of the course, the students should be able to understand basic operating system

commands, explore various system calls, write shell scripts and shell commands using

kernel APIs, implement and analyze different Process Scheduling Algorithms, Memory

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 3

Management algorithms and evaluate process management techniques and deadlock

handling using simulator.

5. Evaluation criteria
This subject is offered to the students of VI semester CSE by department of Computer

Science and Engineering of the University. The student will be appear in the lab

examination twice in the semester, one at the time of Mid Term examination and another at

the time of End Term Examination.

The overall marks distribution for the lab is as follows.

S.
No

Evaluation Criteria
Mid Term

Examination
End Term

examination
Total

1. Practical Files 05 05 10

2. Lab Attendance - 05 05

3. Viva 05 10 15

5. Lab Written Work 05 15 25

TOTAL 50

6. Guidelines to Students:
 Equipment in the lab for the use of student community. Students need to maintain a

proper decorum in the computer lab. Students must use the equipment with care.

Any damage caused is punishable.

 Students are required to carry their observation / programs book with completed

exercises while entering the lab.

 Students are supposed to occupy the machines allotted to them and are not

supposed to talk or make noise in the lab. The allocation is put up on the lab notice

board.

 Lab can be used in free time / lunch hours by the students who need to use the

systems should take prior permission from the lab in-charge.

 Lab records need to be submitted on or before date of submission.

 Students are not supposed to use pen drives/CD.

7. Format of Index

S.No.
Aim Of the
program

Date of
Performance

Date Of
Submission

Remark Signature

write
complete aim
of the
program that
student has
written in the
aim section in
every
program

DD/MM/YYYY DD/MM/YYYY
Here faculty will write some
remark/grade/comment/etc.

Signature of
the faculty

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 4

8. How to write Program in the Lab Record

Student will need to write program in following format.

Aim : write the complete aim of the program to be developed.

Software Used : what types of different software used to develop this

 program

1. IDE/Compiler :

2. Operating System

 :

Source Code : write complete source code with name of the file in

 the middle of the sheet and program should be written in proper

 indentation.

Output : write the complete output with set of inputs entered by user

 during execution.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 5

9. Program List
1. Explore the internal commands of linux like ls, chdir, mkdir, chown, chmod, chgrp, ps

etc.

2. Write shell scripts to do the following:

a. Display top 10 processes in descending order

b. Display processes with highest memory usage.

c. Display current logged in user and log name.

d. Display current shell, home directory, operating

e. System type, current path setting, and current working directory.

f. Display OS version, release number, kernel version.

g. Illustrate the use of sort, grep, awk, etc.

3. Programs for process management

a. Create a child process in Linux using the fork() system call. From the child

process obtain the process ID of both child and parent by using getpid() and

getppid() system call.

b. Explore wait() and waitpid() before termination of process.

c. Explore the following system calls: open(), read(), write(), close(), getpid(),

setpid(), getuid(), getgid(), getegid(),geteuid()

4. Implement basic commands of linux like ls, cp, mv and others using kernel APIs.

5. Write a program to implement any two CPU scheduling algorithms like FCFS, SJF,

Round Robin etc.

6. Write a program to implement dynamic partitioning placement algorithms i.e Best Fit,

Fit, Worst-Fit etc

7. Write a program to implement various page replacement policies.

8. Using the CPU-OS simulator analyze and synthesize the following:

a. Process Scheduling algorithms.

b. Thread creation and synchronization.

c. Deadlock prevention and avoidance.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 6

Module 1 Exploring Linux Commands

The command is followed by options (optional of course) and a list of arguments. The

options can modify the behavior of a command. The arguments may be files or directories

or some other data on which the command acts. Every command might not need

arguments. Some commands work with or without them (e.g. ‘ls’ command). The options

can be provided in two ways: full word options with -- (e.g. --help), or single letter options

with - (e.g. -a -b -c or multiple options, -abc).

Linux Basic Commands

Let’s start with some simple commands.

1. pwd command - ‘pwd’ command prints the absolute path to current working directory.

$ pwd

/home/raghu

2. cal command- Displays the calendar of the current month.

$ cal

July 2012

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

‘cal ’ will display calendar for the specified month and year.

$ cal 08 1991

August 1991

Su Mo Tu We Th Fr Sa

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

3. echo command- This command will echo whatever you provide it.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 7

$ echo "spsu.ac.in"

spsu.ac.in

The ‘echo’ command is used to display the values of a variable. One such variable is
‘HOME’. To check the value of a variable precede the variable with a $ sign.

$ echo $HOME

/home/raghu

4. date command- Displays current time and date.

$ date

Fri Jul 6 01:07:09 IST 2012

If you are interested only in time, you can use 'date +%T' (in hh:mm:ss):

$ date +%T

01:13:14

5. tty command- Displays current terminal.

$ tty

/dev/pts/0

6. whoami command-This command reveals the user who is currently logged in.

$ whoami

raghu

7. id command- This command prints user and groups (UID and GID) of the
current user.

$ id

uid=1000(raghu) gid=1000(raghu)

groups=1000(raghu),4(adm),20(dialout),24(cdrom),46(plugdev),112(lp

admin),120(admin),122(sambashare)

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 8

By default, information about the current user is displayed. If another username is provided
as an argument, information about that user will be printed:

$ id root

uid=0(root) gid=0(root) groups=0(root)

8. clear command- This command clears the screen.
9. Help command- With almost every command, ‘--help’ option shows usage summary for

that command.

$ date --help

Usage: date [OPTION]... [+FORMAT] or: date [-u|--utc|--universal]

[MMDDhhmm[[CC]YY][.ss]] Display the current time in the given

FORMAT, or set the system date.

10. whatis command- This command gives a one line description about the command. It
can be used as a quick reference for any command.

$ whatis date

date (1) - print or set the system date and time

$ whatis whatis

whatis (1) - display manual page descriptions

11. Manual Pages- ‘--help’ option and ‘whatis’ command do not provide thorough
information about the command. For more detailed information, Linux provides man
pages and info pages. To see a command's manual page, man command is used.

$ man date

The man pages are properly documented pages. They have following sections:

NAME: The name and one line description of the command.

SYNOPSIS: The command syntax.

DESCRIPTION: Detailed description about what a command does.

OPTIONS: A list and description of all of the command's options.

EXAMPLES: Examples of command usage.

FILES: Any file associated with the command.

AUTHOR: Author of the man page

REPORTING BUGS: Link of website or mail-id where you can report any bug.

SEE ALSO: Any commands related to the command, for further reference.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 9

With -k option, a search through man pages can be performed. This searches for a pattern

in the name and short description of a man page.

$ man -k gzip

gzip (1) - compress or expand files

lz (1) - gunzips and shows a listing of a gzip'd tar'd archive

tgz (1) - makes a gzip'd tar archive

uz (1) - gunzips and extracts a gzip'd tar'd archive

zforce (1) - force a '.gz' extension on all gzip files

12. Info pages

Info documents are sometimes more elaborate than the man pages. But for some

commands, info pages are just the same as man pages. These are like web pages. Internal

links are present within the info pages. These links are called nodes. Info pages can be

navigated from one page to another through these nodes.

$ info date

File Commands

1. The following Linux Command take you to the '/ home'directory

cd /home

2. This command go back one level

cd ..

3. This command takes you two folders back.

cd ../..

4. This command take you to home directory

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 10

cd

5. This command takes you to the user's home directory

cd ~user

6. This command takes you to the previous directory

cd -

"COPY" Commands in Linux

7. This command helps you copy one file to another

cp file1 file2

8. Copy all files of a directory within the current work directory

cp dir/* .

9. Copy a directory within the current work directory

cp -a /tmp/dir1 .

10. Copy a directory

cp -a dir1 dir2

11. Outputs the mime type of the file as text

cp file file1

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 11

12. Linux Command to create a symbolic link to file or directory

ln -s file1 lnk1

13. Create a physical link to file or directory

ln file1 lnk1

14. View files of directory

ls

15. View files of directory

ls -F

16. Show details of files and directory

ls -l

17. Show hidden files

ls -a

18. Show files and directory containing numbers

ls *[0-9]*

19. Show files and directories in a tree starting from root

lstree

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 12

20. Create a directory called 'dir1'

mkdir dir1

21. Create two directories simultaneously

mkdir dir1 dir2

22. Create a directory tree

mkdir -p /tmp/dir1/dir2

23. Move a file or directory

mv dir/file /new_path

24. Show the path of work directory

pwd

25. Delete file called 'file1'

rm -f file1

26. Remove a directory called 'dir1' and contents recursively

rm -rf dir1

27. Remove two directories and their contents recursively

rm -rf dir1 dir2

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 13

28. Delete directory called 'dir1'

rmdir dir1

30. Modify timestamp of a file or directory - (YYMMDDhhmm)

touch -t 0712250000 file1

31. Show files and directories in a tree starting from root(1)

tree

Linux Commands for Process Management

32. The top command gives you information on the processes that currently exist.

top

33. The htop command is like top, but prettier and smarter.

htop

34. Use the ps command to list running processes (top and htop list all processes whether
active or inactive).

ps

35. A step up from the simple ps command, pstree is used to display a tree diagram of

processes that also shows relationships that exist between them.

pstree

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 14

36. The who command will display a list of all the users currently logged into your Linux
system.

who

37. As its name suggests, kill can be used to terminate a process with extreme prejudice.

kill

38. The pkill and killall commands can kill a process, given its name.

pkill & killall

39. pgrep returns the process IDs that match it.

pgrep

40. With the help of nice command, users can set or change the priorities of processes in
Linux.

nice

41. It is similar to nice command. Use this command to change the priority of an already
running process.

renice

42. Gives the Process ID (PID) of a process

pidof

43. Gives free hard disk space on your system

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 15

df

44. Gives free RAM on your system

free

File Permissions

45. chmod the command for changing permissions

Syntax: chmod permission dir/file

chmod 755 Linux_Directory

chmod 644 Linux_File

Different File Permissions

rwx rwx rwx = 111 111 111

rw- rw- rw- = 110 110 110

rwx --- --- = 111 000 000

rwx = 111 in binary = 7

rw- = 110 in binary = 6

r-x = 101 in binary = 5

r-- = 100 in binary = 4

7 = 4+2+1 (read/write/execute)
6 = 4+2 (read/write)
5 = 4+1 (read/execute)
4 = 4 (read)
3 = 2+1 (write/execute)
2 = 2 (write)
1 = 1 (execute)

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 16

Briefing about Permissions in Linux

There is a huge importance with Linux Commands when we discuss about Permissions.
No restrictions on permissions. Anybody may do anything. Generally not a desirable
setting.

777 (rwxrwxrwx)

The file's owner may read, write, and execute the file. All others may read and execute the
file. This setting is common for programs that are used by all users.

755 (rwxr-xr-x)

The file's owner may read, write, and execute the file. Nobody else has any rights. This
setting is useful for programs that only the owner may use and must be kept private from
others.

700 (rwx------)

All users may read and write the file.

666 (rw-rw-rw-)

The owner may read and write a file, while all others may only read the file. A common
setting for data files that everybody may read, but only the owner may change.

644 (rw-r--r--)

The owner may read and write a file. All others have no rights. A common setting for data
files that the owner wants to keep private.

600 (rw-------)

How to use "Find Command"

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 17

The below Linux Commands gives you better Idea on find commands. You can also check
more Find Commands in our other article too.

46. To find a file by name

find -name "File1"

47. To find a file by name, but ignore the case of the "File1"

find -iname "File1"

48. To search all files that end in ".conf"

find /path -type f -name "*.conf"

49. To find all files that are exactly 50 bytes

find /path -size 50c

50. To find all files less than 50 bytes

find /path -size -50c

51. To Find all files more than 700 Megabytes

find / -size +700M

52. To find files that have a modification time of a day ago

find / -mtime 1

53. To find files that were accessed in less than a day ago

https://www.fastwebhost.in/blog/?s=find

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 18

find / -atime -1

54. To find files that last had their meta information changed more than 3 days ago

find / -ctime +3

55. To find files that were accessed in less than a minute ago

find / -mmin -1

56. If we want to match an exact set of permissions

find / -perm 644

57. If we want to specify anything with at least those permissions

find / -perm -644

Linux Commands to check Word Count

58. Prints the number of lines in a file.

wc -l file_name OR cat file_name | wc -l

59. Prints the number of words in a file.

wc -w

60. Displays the count of bytes in a file.

wc -c

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 19

61. Prints the count of characters from a file.

wc -m

62. Prints only the length of the longest line in a file.

wc -L

Linux Commands to know System Information

104. To know only system name, you can use uname command

uname

105. To view your network hostname

uname -n

106. To get information about kernel-version

uname -v

107. To get the information about your kernel release

uname -r

108. To get the information about your kernel release

uname -r

109. To print your machine hardware name

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 20

uname -m

110. All this information can be printed at once. The below two commands gives same
result.

uname -a

cat /proc/version

111. Find out information about the Linux distribution and version

cat /etc/*release*

112. To gather information about file system partitions

fdisk -l

113. To view mounted file systems.

mount

114. To view information about your CPU architecture such as number of CPU’s, cores,
CPU family model, CPU caches, threads, etc. Either of the two below commands gives
same output.

lscpu

cat /proc/cpuinfo

115. To view information about block devices

lsblk

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 21

Extract Information about Hardware Components using
"dmidecode"

116. To print information about memory. You can get the similar output with all the below
commands.

dmidecode -t memory

cat /proc/meminfo

free or free -mt or free -gt

117. To print information about system

dmidecode -t system

118. To print information about BIOS

dmidecode -t bios

119. To print information about processor

dmidecode -t processor

120. To dump all hardware information

dmidecode | less

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 22

Module 2 Exploring Shell Scripts

2.1 Introduction to kernel and shell:

An Operating is made of many components, but its two prime components are Kernel and

Shell.

A Kernel is at the nucleus of a computer. It makes the communication between the

hardware and software possible. While the Kernel is the innermost part of an operating

system, a shell is the outermost one. The kernel is a computer program that is the core of a

computer’s operating system, with complete control over everything in the system. It

manages following resources of the Linux system – File management, Process

management, I/O management, Memory management, Device management etc.

A shell is the outermost one. it is special user program which provide an interface to user to

use operating system services. Shell accepts human readable commands from user and

converts them into something which kernel can understand. The shell gets started when the

user logs in or start the terminal. The Shell issues a command prompt (usually $), where

you can type your input, which is then executed when you hit the Enter key. The output or

the result is thereafter displayed on the terminal.

The Shell wraps around the delicate interior of an Operating system protecting it from

accidental damage. Hence the name Shell.

The prompt, $, which is called the command prompt, is issued by the shell. While the

prompt is displayed, you can type a command. hell reads your input after you press Enter.

You can customize your command prompt using the environment variable PS1.

In UNIX, there are two major types of shells −

 Bourne shell − If you are using a Bourne-type shell, the $ character is the default
prompt.

 C shell − If you are using a C-type shell, the % character is the default prompt.

The Bourne Shell has the following subcategories −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 23

 Bourne shell (sh)

 Korn shell (ksh)

 Bourne Again shell (bash)

 POSIX shell (sh)

The different C-type shells follow −

 C shell (csh)

 TENEX/TOPS C shell (tcsh)

2.2 Introduction to Shell Scripts

The basic concept of a shell script is a list of commands.Shell scripting is a process of

writing a series of command for the shell to execute. It can combine lengthy and repetitive

sequences of commands into a single and simple script, which can be stored and executed

anytime. This reduces the effort required by the end user.

A shell can also take commands as input from file we can write these commands in a file

and can execute them in shell to avoid this repetitive work. These files are called Shell

Scripts or Shell Programs. Shell scripts are similar to the batch file in MS-DOS.

2.3 Need shell scripts.

There are many reasons to write shell scripts –

 To avoid repetitive work and automation.

 System admins use shell scripting for routine backups.

 System monitoring.

 Adding new functionality to the shell etc.

2.4 Advantages of shell scripts

 The command and syntax are exactly the same as those directly entered in
command line, so programmer do not need to switch to entirely different syntax

 Writing shell scripts are much quicker

 Quick start

 Interactive debugging etc.

2.5 Disadvantages of shell scripts
 Prone to costly errors, a single mistake can change the command which might

be harmful

 Slow execution speed

 Design flaws within the language syntax or implementation

 Not well suited for large and complex task

 Provide minimal data structure unlike other scripting languages. Etc

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 24

2.6 Example Script

Assume we create a test.sh script. Note all the scripts would have the .sh extension.
Before you add anything else to your script, you need to alert the system that a shell script
is being started.

For example −

#!/bin/sh

This tells the system that the commands that follow are to be executed by the Bourne

shell. It's called a shebang because the # symbol is called a hash, and the ! symbol is

called a bang. It directs the script to the interpreter location. So, if we use"#! /bin/sh" the

script gets directed to the bourne-shell.

To create a script containing any vGuptad commands, you put the shebang line first and

then add the commands −

#!/bin/bash
pwd
ls

2.6.1 Adding shell comments

In Shell programming, the syntax to add a comment is

#comment

For example.

#!/bin/bash
Author : Harish Tiwari
Copyright (c) Spsu.ac.in
Script follows here:
pwd
ls

2.6.2 Saving and Running Shell Script

Each shell script is saved with .sh file extension eg. Example.sh. make this script file
executable as follows:

$chmod +x test.sh

The shell script is now ready to be executed –

$./test.sh

Upon execution, you will receive the following result −

/home/haish
index.htm unix-basic_utilities.htm unix-directories.htm
test.sh unix-communication.htm unix-environment.htm

Note − To execute a program available in the current directory, use ./program_name

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 25

2.7 Unix / Linux - Using Shell Variable

2.7.1 Introduction to shell variable.

Shell variables are used to store information and they can by the shell only. A variable is

nothing more than a pointer to the actual data. A variable is a character string to which we

assign a value. The value assigned could be a number, text, filename, device, or any other

type of data.

The shell enables you to create, assign, and delete variables.

For example, the following creates a shell variable and then prints it:

variable ="Hello"
echo $variable

Below is a small script which will use a variable.

#!/bin/sh
echo "what is your first name?"
read fname
echo " what is your Last name "
read lname
echo "You are $ fname $lname!"

2.7.2 Variable Names

The name of a variable can contain only letters (a to z or A to Z), numbers (0 to 9) or the

underscore character (_).

By convention, Unix shell variables will have their names in UPPERCASE.

The following examples are vGuptad variable names −

_GUPTA
TOKEN_A
VAR_1
VAR_2

Following are the examples of invGuptad variable names −

2_VAR
-VARIABLE
VAR1-VAR2
VAR_A!

The reason you cannot use other characters such as !, *, or - is that these characters have

a special meaning for the shell.

2.7.3 Defining Variables

Variables are defined as follows −

variable_name=variable_value

For example −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 26

NAME="Harish Tiwari"

The above example defines the variable NAME and assigns the value "Abhishek Gupta" to

it. Variables of this type are called scalar variables. A scalar variable can hold only one

value at a time.

Shell enables you to store any value you want in a variable. For example −

VAR1="Abhishek Gupta"
VAR2=100

2.7.4 Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($) −

For example, the following script will access the value of defined variable NAME and print it

on STDOUT −

#!/bin/sh

NAME="Harish Tiwari"
echo $NAME
The above script will produce the following value −

Harish Tiwari

2.7.5 Read-only Variables

Shell provides a way to mark variables as read-only by using the read-only command. After

a variable is marked read-only, its value cannot be changed.

For example, the following script generates an error while trying to change the value of

NAME −

#!/bin/sh

NAME="Abhishek Gupta"
readonly NAME
NAME="Abhishek Agrawal"

The above script will generate the following result −

/bin/sh: NAME: This variable is read only.

2.7.6 Unsetting Variables

Unsetting or deleting a variable directs the shell to remove the variable from the list of

variables that it tracks. Once you unset a variable, you cannot access the stored value in

the variable.

Following is the syntax to unset a defined variable using the unset command −

unset variable_name

The above command unsets the value of a defined variable. Here is a simple example that

demonstrates how the command works –

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 27

#!/bin/sh

NAME="Abhishek Gupta"
unset NAME
echo $NAME

The above example does not print anything. You cannot use the unset command

to unset variables that are marked readonly.

2.7.7 Variable Types

When a shell is running, three main types of variables are present −

 Local Variables − A local variable is a variable that is present within the current

instance of the shell. It is not available to programs that are started by the shell.

They are set at the command prompt.

 Environment Variables − An environment variable is available to any child process

of the shell. Some programs need environment variables in order to function

correctly. Usually, a shell script defines only those environment variables that are

needed by the programs that it runs.

 Shell Variables − A shell variable is a special variable that is set by the shell and is

required by the shell in order to function correctly. Some of these variables are

environment variables whereas others are local variables.

2.7.8 Special variable

Unix/Linux are also having some special variable which are having some special

predefined meaning. It specifies the reason why we should not use certain non-

alphanumeric characters in variable names. This is because those characters are used in

the names of special UNIX variables. These variables are reserved for specific functions.

For example, the $ character represents the process ID number, or PID, of the current shell

−

$echo $$

The above command writes the PID of the current shell −

29949

The following table shows a number of special variables that you can use in your shell scripts −

Sr.No. Variable & Description

1 $0- The filename of the current script.

2

$n

These variables correspond to the arguments with which a script was

invoked. Here n is a positive decimal number corresponding to the position

of an argument (the first argument is $1, the second argument is $2, and so

on).

3 $# - The number of arguments supplied to a script.

4 $*- All the arguments are double quoted. If a script receives two arguments,

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 28

$* is equivalent to $1 $2.

5
$@- All the arguments are individually double quoted. If a script receives

two arguments, $@ is equivalent to $1 $2.

6 $? -The exit status of the last command executed.

7
$$- The process number of the current shell. For shell scripts, this is the

process ID under which they are executing.

8 $!- The process number of the last background command.

2.8 Command-Line Arguments

The command-line arguments $1, $2, $3, ...$9 are positional parameters, with $0 pointing

to the actual command, program, shell script, or function and $1, $2, $3, ...$9 as the

arguments to the command.

Following script uses various special variables related to the command line −

#!/bin/sh

echo "File Name: $0"
echo "First Parameter : $1"
echo "Second Parameter : $2"
echo "Quoted Values: $@"
echo "Quoted Values: $*"
echo "Total Number of Parameters : $#"

Here is a sample run for the above script −

$./test.sh Abhishek Gupta
File Name : ./test.sh
First Parameter : Abhishek
Second Parameter : Gupta
Quoted Values: Abhishek Gupta
Quoted Values: Abhishek Gupta
Total Number of Parameters : 2

2.9 Special Parameters $* and $@

There are special parameters that allow accessing all the command-line arguments at

once. $* and $@ both will act the same unless they are enclosed in double quotes, "".

Both the parameters specify the command-line arguments. However, the "$*" special

parameter takes the entire list as one argument with spaces between and the "$@" special

parameter takes the entire list and separates it into separate arguments.

We can write the shell script as shown below to process an unknown number of

commandline arguments with either the $* or $@ special parameters −

#!/bin/sh

for TOKEN in $*
do
 echo $TOKEN
done

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 29

Here is a sample run for the above script −

$./test.sh Abhishek Gupta 10 Years Old
Abhishek
Gupta
10
Years
Old

Note − Here do...done is a kind of loop that will be covered in a subsequent tutorial.

2.10 Exit Status

The $? variable represents the exit status of the previous command.

Exit status is a numerical value returned by every command upon its completion. As a rule,
most commands return an exit status of 0 if they were successful, and 1 if they were
unsuccessful.

Some commands return additional exit statuses for particular reasons. For example, some
commands differentiate between kinds of errors and will return various exit values
depending on the specific type of failure.

Following is the example of successful command −

$./test.sh Abhishek Gupta
File Name : ./test.sh
First Parameter : Abhishek
Second Parameter : Gupta
Quoted Values: Abhishek Gupta
Quoted Values: Abhishek Gupta
Total Number of Parameters : 2
$echo $?
0
$

2.11 Unix / Linux - Shell Basic Operators

There are various operators supported by each shell. We will discuss in detail about
Bourne shell (default shell) in this chapter.

We will now discuss the following operators −

 Arithmetic Operators

 Relational Operators

 Boolean Operators

 String Operators

 File Test Operators

Bourne shell didn't originally have any mechanism to perform simple arithmetic operations
but it uses external programs, either awk or expr.

The following example shows how to add two numbers −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 30

#!/bin/sh

val=`expr 2 + 2`
echo "Total value : $val"

The above script will generate the following result −

Total value : 4

The following points need to be considered while adding −

 There must be spaces between operators and expressions. For example, 2+2 is not
correct; it should be written as 2 + 2.

 The complete expression should be enclosed between ‘ ‘, called the backtick.

2.11.1 Arithmetic Operators

The following arithmetic operators are supported by Bourne Shell.

Assume variable a holds 10 and variable b holds 20 then −

Operator Description Example

+ (Addition) Adds values on either side of the operator `expr $a + $b` will give 30

- (Subtraction) Subtracts right hand operand from left hand operand `expr $a - $b` will give -10

* (Multiplication) Multiplies values on either side of the operator `expr $a * $b` will give 200

/ (Division) Divides left hand operand by right hand operand `expr $b / $a` will give 2

% (Modulus) Divides left hand operand by right hand operand
and returns remainder

`expr $b % $a` will give 0

= (Assignment) Assigns right operand in left operand a = $b would assign value
of b into a

== (Equality) Compares two numbers, if both are same then
returns true.

[$a == $b] would return
false.

!= (Not Equality) Compares two numbers, if both are different then
returns true.

[$a != $b] would return
true.

It is very important to understand that all the conditional expressions should be inside
square braces with spaces around them, for example [$a == $b] is correct
whereas, [$a==$b] is incorrect.

All the arithmetical calculations are done using long integers.

Example: Here is an example which uses all the arithmetic operators −

#!/bin/sh

a=10
b=20

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 31

val=`expr $a + $b`
echo "a + b : $val"

val=`expr $a - $b`
echo "a - b : $val"

val=`expr $a * $b`
echo "a * b : $val"

val=`expr $b / $a`
echo "b / a : $val"

val=`expr $b % $a`
echo "b % a : $val"

if [$a == $b]
then
 echo "a is equal to b"
fi

if [$a != $b]
then
 echo "a is not equal to b"
fi

The above script will produce the following result −

a + b : 30
a - b : -10
a * b : 200
b / a : 2
b % a : 0
a is not equal to b

2.11.2 Relational Operators

Bourne Shell supports the following relational operators that are specific to numeric values.
These operators do not work for string values unless their value is numeric.

For example, following operators will work to check a relation between 10 and 20 as well as
in between "10" and "20" but not in between "ten" and "twenty".

Assume variable a holds 10 and variable b holds 20 then −

Operator

Description Example

-eq
Checks if the value of two operands are equal or not; if yes,
then the condition becomes true.

[$a -eq $b] is not true.

-ne
Checks if the value of two operands are equal or not; if values
are not equal, then the condition becomes true.

[$a -ne $b] is true.

-gt
Checks if the value of left operand is greater than the value of
right operand; if yes, then the condition becomes true.

[$a -gt $b] is not true.

-lt
Checks if the value of left operand is less than the value of right
operand; if yes, then the condition becomes true.

[$a -lt $b] is true.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 32

-ge
Checks if the value of left operand is greater than or equal to
the value of right operand; if yes, then the condition becomes
true.

[$a -ge $b] is not true.

-le
Checks if the value of left operand is less than or equal to the
value of right operand; if yes, then the condition becomes true.

[$a -le $b] is true.

It is very important to understand that all the conditional expressions should be placed
inside square braces with spaces around them. For example, [$a <= $b] is correct
whereas, [$a <= $b] is incorrect.

Example: Here is an example which uses all the relational operators −

#!/bin/sh

a=10
b=20

if [$a -eq $b]
then
 echo "$a -eq $b : a is equal to b"
else
 echo "$a -eq $b: a is not equal to b"
fi

if [$a -ne $b]
then
 echo "$a -ne $b: a is not equal to b"
else
 echo "$a -ne $b : a is equal to b"
fi

if [$a -gt $b]
then
 echo "$a -gt $b: a is greater than b"
else
 echo "$a -gt $b: a is not greater than b"
fi

if [$a -lt $b]
then
 echo "$a -lt $b: a is less than b"
else
 echo "$a -lt $b: a is not less than b"
fi

if [$a -ge $b]
then
 echo "$a -ge $b: a is greater or equal to b"
else
 echo "$a -ge $b: a is not greater or equal to b"
fi

if [$a -le $b]

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 33

then
 echo "$a -le $b: a is less or equal to b"
else
 echo "$a -le $b: a is not less or equal to b"
fi

The above script will generate the following result −

10 -eq 20: a is not equal to b
10 -ne 20: a is not equal to b
10 -gt 20: a is not greater than b
10 -lt 20: a is less than b
10 -ge 20: a is not greater or equal to b
10 -le 20: a is less or equal to b

2.11.3 Boolean Operators

The following Boolean operators are supported by the Bourne Shell. Assume
variable a holds 10 and variable b holds 20 then −

Operator Description Example

!
This is logical negation. This inverts a true condition into false
and vice versa.

[! false] is true.

-o
This is logical OR. If one of the operands is true, then the
condition becomes true.

[$a -lt 20 -o $b -gt 100]
is true.

-a
This is logical AND. If both the operands are true, then the
condition becomes true otherwise false.

[$a -lt 20 -a $b -gt 100]
is false.

Example: Here is an example which uses all the Boolean operators –

#!/bin/sh

a=10
b=20

if [$a != $b]
then
 echo "$a != $b : a is not equal to b"
else
 echo "$a != $b: a is equal to b"
fi

if [$a -lt 100 -a $b -gt 15]
then
 echo "$a -lt 100 -a $b -gt 15 : returns true"
else
 echo "$a -lt 100 -a $b -gt 15 : returns false"
fi

if [$a -lt 100 -o $b -gt 100]
then
 echo "$a -lt 100 -o $b -gt 100 : returns true"
else
 echo "$a -lt 100 -o $b -gt 100 : returns false"

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 34

fi

if [$a -lt 5 -o $b -gt 100]
then
 echo "$a -lt 100 -o $b -gt 100 : returns true"
else
 echo "$a -lt 100 -o $b -gt 100 : returns false"
fi

The above script will generate the following result −

10 != 20 : a is not equal to b
10 -lt 100 -a 20 -gt 15 : returns true
10 -lt 100 -o 20 -gt 100 : returns true
10 -lt 5 -o 20 -gt 100 : returns false

2.11.4 String Operators

The following string operators are supported by Bourne Shell. Assume variable a holds

"abc" and variable b holds "efg" then −

Operator

Description Example

=
Checks if the value of two operands are equal or not; if yes, then the
condition becomes true.

[$a = $b] is not true.

!=
Checks if the value of two operands are equal or not; if values are not
equal then the condition becomes true.

[$a != $b] is true.

-z
Checks if the given string operand size is zero; if it is zero length,
then it returns true.

[-z $a] is not true.

-n
Checks if the given string operand size is non-zero; if it is nonzero
length, then it returns true.

[-n $a] is not false.

str
Checks if str is not the empty string; if it is empty, then it returns
false.

[$a] is not false.

Example: Here is an example which uses all the String operators

#!/bin/sh

a="abc"
b="efg"

if [$a = $b]
then
 echo "$a = $b : a is equal to b"
else
 echo "$a = $b: a is not equal to b"
fi

if [$a != $b]
then
 echo "$a != $b : a is not equal to b"
else

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 35

 echo "$a != $b: a is equal to b"
fi

if [-z $a]
then
 echo "-z $a : string length is zero"
else
 echo "-z $a : string length is not zero"
fi

if [-n $a]
then
 echo "-n $a : string length is not zero"
else
 echo "-n $a : string length is zero"
fi

if [$a]
then
 echo "$a : string is not empty"
else
 echo "$a : string is empty"
fi

The above script will generate the following result −

abc = efg: a is not equal to b
abc != efg : a is not equal to b
-z abc : string length is not zero
-n abc : string length is not zero
abc : string is not empty

2.11.5 File Test Operators

We have a few operators that can be used to test various properties associated with a Unix

file. Assume a variable file holds an existing file name "test" the size of which is 100 bytes

and has read, write and execute permission on –

Operator

Description Example

-b file Checks if file is a block special file; if yes, then the condition becomes

true.

[-b $file] is false.

-c file Checks if file is a character special file; if yes, then the condition

becomes true.

[-c $file] is false.

-d file Checks if file is a directory; if yes, then the condition becomes true. [-d $file] is not true.

-f file Checks if file is an ordinary file as opposed to a directory or special file;

if yes, then the condition becomes true.

[-f $file] is true.

-g file Checks if file has its set group ID (SGID) bit set; if yes, then the

condition becomes true.

[-g $file] is false.

-k file Checks if file has its sticky bit set; if yes, then the condition becomes

true.

[-k $file] is false.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 36

-p file Checks if file is a named pipe; if yes, then the condition becomes true. [-p $file] is false.

-t file Checks if file descriptor is open and associated with a terminal; if yes,

then the condition becomes true.

[-t $file] is false.

-u file Checks if file has its Set User ID (SUID) bit set; if yes, then the

condition becomes true.

[-u $file] is false.

-r file Checks if file is readable; if yes, then the condition becomes true. [-r $file] is true.

-w file Checks if file is writable; if yes, then the condition becomes true. [-w $file] is true.

-x file Checks if file is executable; if yes, then the condition becomes true. [-x $file] is true.

-s file Checks if file has size greater than 0; if yes, then condition becomes

true.

[-s $file] is true.

-e file Checks if file exists; is true even if file is a directory but exists. [-e $file] is true.

Example: Here is an example which uses all the file operators

#!/bin/sh

file="/var/www/tutorialspoint/unix/test.sh"

if [-r $file]
then
 echo "File has read access"
else
 echo "File does not have read access"
fi

if [-w $file]
then
 echo "File has write permission"
else
 echo "File does not have write permission"
fi

if [-x $file]
then
 echo "File has execute permission"
else
 echo "File does not have execute permission"
fi

if [-f $file]
then
 echo "File is an ordinary file"
else
 echo "This is sepcial file"
fi

if [-d $file]
then
 echo "File is a directory"
else
 echo "This is not a directory"
fi

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 37

if [-s $file]
then
 echo "File size is not zero"
else
 echo "File size is zero"
fi

if [-e $file]
then
 echo "File exists"
else
 echo "File does not exist"
fi

The above script will produce the following result −

File does not have write permission
File does not have execute permission
This is sepcial file
This is not a directory
File size is not zero
File does not exist

2.12 Unix / Linux - Shell Decision Making

While writing a shell script, there may be a situation when you need to adopt one path out

of the given two paths. So you need to make use of conditional statements that allow your

program to make correct decisions and perform the right actions.

Unix Shell supports conditional statements which are used to perform different actions

based on different conditions. We will now understand two decision-making statements

here −

 The if...else statement

 The case...esac statement

2.12.1 The if...else statements

If else statements are useful decision-making statements which can be used to select an

option from a given set of options.

Unix Shell supports following forms of if…else statement −

 if...fi statement

 if...else...fi statement

 if...elif...else...fi statement

if…fi statement

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 38

The if...fi statement is the fundamental control statement that allows Shell to make

decisions and execute statements conditionally.

Syntax

if [expression]
then
 Statement(s) to be executed if expression is true
fi

The Shell expression is evaluated in the above syntax. If the resulting value is true,

given statement(s) are executed. If the expression is false then no statement would be

executed. Most of the times, comparison operators are used for making decisions.

It is recommended to be careful with the spaces between braces and expression. No

space produces a syntax error.

If expression is a shell command, then it will be assumed true if it returns 0 after

execution. If it is a Boolean expression, then it would be true if it returns true.

Example

#!/bin/sh
a=10
b=20
if [$a == $b]
then
 echo "a is equal to b"
fi

if [$a != $b]
then
 echo "a is not equal to b"
fi

The above script will generate the following result –

a is not equal to b

The if...else...fi statement

The if...else...fi statement is the next form of control statement that allows Shell to execute

statements in a controlled way and make the right choice.

Syntax

if [expression]
then
 Statement(s) to be executed if expression is true
else
 Statement(s) to be executed if expression is not true
fi

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 39

The Shell expression is evaluated in the above syntax. If the resulting value is true,

given statement(s) are executed. If the expression is false, then no statement will be

executed.

Example

The above example can also be written using the if...else statement as follows −

#!/bin/sh

a=10
b=20

if [$a == $b]
then
 echo "a is equal to b"
else
 echo "a is not equal to b"
fi

Upon execution, you will receive the following result −

a is not equal to b

The if...elif...fi statement
The if...elif...fi statement is the one level advance form of control statement that allows Shell to

make correct decision out of several conditions.

Syntax

if [expression 1]
then
 Statement(s) to be executed if expression 1 is true
elif [expression 2]
then
 Statement(s) to be executed if expression 2 is true
elif [expression 3]
then
 Statement(s) to be executed if expression 3 is true
else
 Statement(s) to be executed if no expression is true
fi

This code is just a series of if statements, where each if is part of the else clause of the

previous statement. Here statement(s) are executed based on the true condition, if none of

the condition is true then else block is executed.

Example

#!/bin/sh

a=10
b=20

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 40

if [$a == $b]
then
 echo "a is equal to b"
elif [$a -gt $b]
then
 echo "a is greater than b"
elif [$a -lt $b]
then
 echo "a is less than b"
else
 echo "None of the condition met"
fi

Upon execution, you will receive the following result −

a is less than b

2.12.2 The case...esac Statement

You can use multiple if...elif statements to perform a multiway branch. However, this is not

always the best solution, especially when all of the branches depend on the value of a

single variable.

Unix Shell supports case...esac statement which handles exactly this situation, and it does

so more efficiently than repeated if...elif statements.

There is only one form of case...esac statement which has been described in detail here −

case...esac statement

The case...esac statement in the Unix shell is very similar to the switch...case statement

we have in other programming languages like C or C++ and PERL, etc.

You can use multiple if...elif statements to perform a multiway branch. However, this is not

always the best solution, especially when all of the branches depend on the value of a

single variable.

Shell supports case...esac statement which handles exactly this situation, and it does so

more efficiently than repeated if...elif statements.

Syntax

The basic syntax of the case...esac statement is to give an expression to evaluate and to

execute several different statements based on the value of the expression.

The interpreter checks each case against the value of the expression until a match is

found. If nothing matches, a default condition will be used.

case word in
 pattern1)
 Statement(s) to be executed if pattern1 matches
 ;;
 pattern2)

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 41

 Statement(s) to be executed if pattern2 matches
 ;;
 pattern3)
 Statement(s) to be executed if pattern3 matches
 ;;
 *)
 Default condition to be executed
 ;;
Esac

Here the string word is compared against every pattern until a match is found. The

statement(s) following the matching pattern executes. If no matches are found, the case

statement exits without performing any action.

There is no maximum number of patterns, but the minimum is one.

When statement(s) part executes, the command ;; indicates that the program flow should

jump to the end of the entire case statement. This is similar to break in the C programming

language.

Example

#!/bin/sh

FRUIT="kiwi"

case "$FRUIT" in
 "apple") echo "Apple pie is quite tasty."
 ;;
 "banana") echo "I like banana nut bread."
 ;;
 "kiwi") echo "New Zealand is famous for kiwi."
 ;;
esac

Upon execution, you will receive the following result −

New Zealand is famous for kiwi.

A good use for a case statement is the evaluation of command line arguments as follows −

#!/bin/sh

option="${1}"
case ${option} in
 -f) FILE="${2}"
 echo "File name is $FILE"
 ;;
 -d) DIR="${2}"
 echo "Dir name is $DIR"
 ;;
 *)

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 42

 echo "`basename ${0}`:usage: [-f file] | [-d directory]"
 exit 1 # Command to come out of the program with status 1
 ;;
esac

Here is a sample run of the above program −

$./test.sh
test.sh: usage: [-f filename] | [-d directory]
$./test.sh -f index.htm
$ vi test.sh
$./test.sh -f index.htm
File name is index.htm
$./test.sh -d unix
Dir name is unix
$

2.13 Unix / Linux - Shell Loop Types

A loop is a powerful programming tool that enables you to execute a set of commands

repeatedly. In this chapter, we will examine the following types of loops available to shell

programmers −

 The while loop

 The for loop

 The until loop

 The select loop

You will use different loops based on the situation. For example, the while loop executes

the given commands until the given condition remains true; the until loop executes until a

given condition becomes true.

Once you have good programming practice you will gain the expertise and thereby, start

using appropriate loop based on the situation. Here, while and for loops are available in

most of the other programming languages like C, C++ and PERL, etc.

2.13.1 The while loop

The while loop enables you to execute a set of commands repeatedly until some condition

occurs. It is usually used when you need to manipulate the value of a variable repeatedly.

Syntax

while command
do
 Statement(s) to be executed if command is true
done

Here the Shell command is evaluated. If the resulting value is true, given statement(s) are

executed. If command is false then no statement will be executed and the program will jump

to the next line after the done statement.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 43

Example

Here is a simple example that uses the while loop to display the numbers zero to nine −

#!/bin/sh
a=0
while [$a -lt 10]
do
 echo $a
 a=`expr $a + 1`
done

Upon execution, you will receive the following result −

0
1
2
3
4
5
6
7
8
9

Each time this loop executes, the variable a is checked to see whether it has a value that is

less than 10. If the value of a is less than 10, this test condition has an exit status of 0. In

this case, the current value of a is displayed and later a is incremented by 1.

2.13.2 The for loop

The for loop operates on lists of items. It repeats a set of commands for every item in a list.

Syntax

for var in word1 word2 ... wordN
do
 Statement(s) to be executed for every word.
done

Here var is the name of a variable and word 1 to word N are sequences of characters

separated by spaces (words). Each time the for loop executes, the value of the variable var

is set to the next word in the list of words, word1 to wordN.

Example

Here is a simple example that uses the for loop to span through the given list of numbers −

#!/bin/sh
for var in 0 1 2 3 4 5 6 7 8 9
do
 echo $var
done

Upon execution, you will receive the following result −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 44

0
1
2
3
4
5
6
7
8
9

Following is the example to display all the files starting with .bash and available in your

home. We will execute this script from my root −

#!/bin/sh
for FILE in $HOME/.bash*
do
 echo $FILE
done

The above script will produce the following result −

/root/.bash_history
/root/.bash_logout
/root/.bash_profile
/root/.bashrc

2.13.3 The until loop

The while loop is perfect for a situation where you need to execute a set of commands

while some condition is true. Sometimes you need to execute a set of commands until a

condition is true.

Syntax

until command
do
 Statement(s) to be executed until command is true
done

Here the Shell command is evaluated. If the resulting value is false, given statement(s) are

executed. If the command is true then no statement will be executed and the program

jumps to the next line after the done statement.

Example

Here is a simple example that uses the until loop to display the numbers zero to nine −

#!/bin/sh
a=0
until [! $a -lt 10]
do
 echo $a
 a=`expr $a + 1`
done

Upon execution, you will receive the following result −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 45

0
1
2
3
4
5
6
7
8
9

2.13.4 The select loop

The select loop provides an easy way to create a numbered menu from which users can

select options. It is useful when you need to ask the user to choose one or more items from

a list of choices.

Syntax

select var in word1 word2 ... wordN
do
 Statement(s) to be executed for every word.
done

Here var is the name of a variable and word1 to wordN are sequences of characters

separated by spaces (words). Each time the for loop executes, the value of the variable var

is set to the next word in the list of words, word1 to wordN.

For every selection, a set of commands will be executed within the loop. This loop was

introduced in ksh and has been adapted into bash. It is not available in sh.

Example

Here is a simple example to let the user select a drink of choice −

#!/bin/ksh
select DRINK in tea cofee water juice appe all none
do
 case $DRINK in
 tea|cofee|water|all)
 echo "Go to canteen"
 ;;
 juice|appe)
 echo "Available at home"
 ;;
 none)
 break
 ;;
 *) echo "ERROR: Invalid selection"
 ;;
 esac
done

The menu presented by the select loop looks like the following −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 46

$./test.sh
1) tea
2) cofee
3) water
4) juice
5) appe
6) all
7) none
#? juice
Available at home
#? none
$

You can change the prompt displayed by the select loop by altering the variable PS3 as

follows −

$PS3 = "Please make a selection => " ; export PS3
$./test.sh
1) tea
2) cofee
3) water
4) juice
5) appe
6) all
7) none
Please make a selection => juice
Available at home
Please make a selection => none
$

2.13.5 Nesting Loops

All the loops support nesting concept which means you can put one loop inside another

similar one or different loops. This nesting can go up to unlimited number of times based on

your requirement.

Here is an example of nesting while loop. The other loops can be nested based on the

programming requirement in a similar way −

2.13.6 Nesting while Loops

It is possible to use a while loop as part of the body of another while loop.

Syntax

while command1 ; # this is loop1, the outer loop
do
 Statement(s) to be executed if command1 is true

 while command2 ; # this is loop2, the inner loop
 do
 Statement(s) to be executed if command2 is true
 done

 Statement(s) to be executed if command1 is true

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 47

done

Example

Here is a simple example of loop nesting. Let's add another countdown loop inside the loop

that you used to count to nine −

#!/bin/sh
a=0
while ["$a" -lt 10] # this is loop1
do
 b="$a"
 while ["$b" -ge 0] # this is loop2
 do
 echo -n "$b "
 b=`expr $b - 1`
 done
 echo
 a=`expr $a + 1`
done

This will produce the following result. It is important to note how echo -n works here. Here -

n option lets echo avoid printing a new line character.

0
1 0
2 1 0
3 2 1 0
4 3 2 1 0
5 4 3 2 1 0
6 5 4 3 2 1 0
7 6 5 4 3 2 1 0
8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

2.14 Shell Substitutions

The shell performs substitution when it encounters an expression that contains one or more

special characters.

Example- Here, the printing value of the variable is substituted by its value. Same

time, "\n" is substituted by a new line −

#!/bin/sh

a=10
echo -e "Value of a is $a \n"

You will receive the following result. Here the -e option enables the interpretation of

backslash escapes.

Value of a is 10

Following is the result without -e option –

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 48

Value of a is 10\n

The following escape sequences which can be used in echo command −

Sr.No. Escape & Description

1
\\ backslash

2
\a alert (BEL)

3
\b backspace

4
\c suppress trailing newline

5
\f form feed

6
\n new line

7
\r carriage return

8
\t horizontal tab

9
\v vertical tab

You can use the -E option to disable the interpretation of the backslash escapes (default).

You can use the -n option to disable the insertion of a new line.

2.14.1 Command Substitution

Command substitution is the mechanism by which the shell performs a given set of

commands and then substitutes their output in the place of the commands.

Syntax

The command substitution is performed when a command is given as −

`command`

When performing the command substitution make sure that you use the backquote, not the

single quote character.

Example

Command substitution is generally used to assign the output of a command to a variable.

Each of the following examples demonstrates the command substitution −

#!/bin/sh

DATE=`date`
echo "Date is $DATE"

USERS=`who | wc -l`
echo "Logged in user are $USERS"

UP=`date ; uptime`
echo "Uptime is $UP"

Upon execution, you will receive the following result −

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 49

Date is Thu Jul 2 03:59:57 MST 2009
Logged in user are 1
Uptime is Thu Jul 2 03:59:57 MST 2009
03:59:57 up 20 days, 14:03, 1 user, load avg: 0.13, 0.07, 0.15

2.14.2 Variable Substitution

Variable substitution enables the shell programmer to manipulate the value of a variable

based on its state. Here is the following table for all the possible substitutions −

Sr.No. Form & Description

1
${var} Substitute the value of var.

2
${var:-word} If var is null or unset, word is substituted for var. The
value of var does not change.

3 ${var:=word} If var is null or unset, var is set to the value of word.

4
${var:?message} If var is null or unset, message is printed to standard
error. This checks that variables are set correctly.

5
${var:+word} If var is set, word is substituted for var. The value
 of var does not change.

Example

Following is the example to show various states of the above substitution −

#!/bin/sh

echo ${var:-"Variable is not set"}

echo "1 - Value of var is ${var}"

echo ${var:="Variable is not set"}

echo "2 - Value of var is ${var}"

unset var

echo ${var:+"This is default value"}

echo "3 - Value of var is $var"

var="Prefix"

echo ${var:+"This is default value"}

echo "4 - Value of var is $var"

echo ${var:?"Print this message"}

echo "5 - Value of var is ${var}"

Upon execution, you will receive the following result −

Variable is not set
1 - Value of var is

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 50

Variable is not set
2 - Value of var is Variable is not set

3 - Value of var is
This is default value
4 - Value of var is Prefix
Prefix
5 - Value of var is Prefix

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 51

2.15 Shell Script Examples

Aim : List Processes based on %CPU and Memory Usage

Description : This script list the processes based on %CPU and Memory usage,

without argument (by default), If you specify the argument (cpu or mem), it lists the

processes based on CPU usage or memory usage.

#! /bin/bash

#List processes based on %cpu and memory usage

echo "Start Time" `date`

By default, it display the list of processes based on the cpu and memory usage

if [$# -eq 0]

then

 echo "List of processes based on the %cpu Usage"

 ps -e -o pcpu,cpu,nice,state,cputime,args --sort pcpu # sorted based on

%cpu

 echo "List of processes based on the memory Usage"

 ps -e -orss=,args= | sort -b -k1,1n # sorted bases rss value

 # If arguements are given (mem/cpu)

else

 case "$1" in

 mem)

 echo "List of processes based on the memory Usage"

 ps -e -orss=,args= | sort -b -k1,1n

 ;;

 cpu)

 echo "List of processes based on the %cpu Usage"

 ps -e -o pcpu,cpu,nice,state,cputime,args --sort pcpu

 ;;

 *)

 echo "Invalid Argument Given \n"

 echo "Usage : $0 mem/cpu"

 exit 1

 esac

fi

echo "End Time" `date`

exit 0

You can execute the above script as shown below.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 52

$ processes.sh
$ processes.sh mem
$ processes.sh cpu

Aim : Display Logged in users and who is using high CPU percentage

Description : This script displays few information about the currently logged in users

 and what they are doing.

#! /bin/bash
w > /tmp/a
echo "Total number of unique users logged in currently"

cat /tmp/a| sed '1,2d' | awk '{print $1}' | uniq | wc -l

echo ""

echo "List of unique users logged in currently"

cat /tmp/a | sed '1,2d'| awk '{print $1}' | uniq

echo ""

echo "The user who is using high %cpu"

cat /tmp/a | sed '1,2d' | awk '$7 > maxuid { maxuid=$7; maxline=$0 }; END {

print maxuid, maxline }'

echo ""

echo "List of users logged in and what they are doing"

Output

$./loggedin.sh
Total number of unique users logged in currently
4

List of unique users logged in currently
john
david
raj
reshma

The user who is using high %cpu
0.99s reshma pts/5 192.168.2.1 15:26 3:01 1.02s 0.99s custom-
download.sh

List of users logged in and what they are doing
 15:53:55 up 230 days, 2:38, 7 users, load average: 0.19, 0.26, 0.24
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
john pts/1 192.168.2.9 14:25 1:28m 0.03s 0.03s -bash
john pts/2 192.168.2.9 14:41 1:11m 0.03s 0.03s -bash
raj pts/0 192.168.2.6 15:07 9:08 0.11s 0.02s -bash
raj pts/3 192.168.2.6 15:19 29:29 0.02s 0.02s -bash
john pts/4 192.168.2.91 15:25 13:47 0.22s 0.20s vim error_log
reshma pts/5 192.168.2.1 15:26 3:01 1.02s 0.99s custom-download.sh

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 53

Aim : Display Total, Used and Free Memory

Description : The following script displays the total, used and free memory space.

#! /bin/bash

Total memory space details

echo "Memory Space Details"

free -t -m | grep "Total" | awk '{ print "Total Memory space : "$2 " MB";

print "Used Memory Space : "$3" MB";

print "Free Memory : "$4" MB";

}'

echo "Swap memory Details"

free -t -m | grep "Swap" | awk '{ print "Total Swap space : "$2 " MB";

print "Used Swap Space : "$3" MB";

print "Free Swap : "$4" MB";

}'

Output

$./mem.sh

Memory Space Details

Total Memory space : 4364 MB

Used Memory Space : 451 MB

Free Memory : 3912 MB

Swap memory Details

Total Swap space : 2421 MB

Used Swap Space : 0 MB

Free Swap : 2421 MB

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 54

Aim : Write shell script to show various system configurations like

1) Currently logged user and his log name

2) Your current shell

3) Your home directory

4) Your operating system type

5) Your current path setting

6) Your current working directory

7) Show Currently logged number of users

8) About your os and version ,release number , kernel version

9) Show all available shells

10) Show mouse settings

11) Show computer cpu information like processor type, speed etc

12) Show memory information

13) Show hard disk information like size of hard-disk, cache memory, model etc

14) File system (Mounted)

#!/bin/bash

nouser=`who | wc -l`
echo -e "User name: $USER (Login name: $LOGNAME)" >> /tmp/info.tmp.01.$$$
echo -e "Current Shell: $SHELL" >> /tmp/info.tmp.01.$$$
echo -e "Home Directory: $HOME" >> /tmp/info.tmp.01.$$$
echo -e "Your O/s Type: $OSTYPE" >> /tmp/info.tmp.01.$$$
echo -e "PATH: $PATH" >> /tmp/info.tmp.01.$$$
echo -e "Current directory: `pwd`" >> /tmp/info.tmp.01.$$$
echo -e "Currently Logged: $nouser user(s)" >> /tmp/info.tmp.01.$$$

if [-f /etc/redhat-release]
then
 echo -e "OS: `cat /etc/redhat-release`" >> /tmp/info.tmp.01.$$$
fi

if [-f /etc/shells]
then
 echo -e "Available Shells: " >> /tmp/info.tmp.01.$$$
 echo -e "`cat /etc/shells`" >> /tmp/info.tmp.01.$$$
fi

if [-f /etc/sysconfig/mouse]
then
 echo -e "---------------------------------------" >> /tmp/info.tmp.01.$$$
 echo -e "Computer Mouse Information: " >> /tmp/info.tmp.01.$$$
 echo -e "---------------------------------------" >> /tmp/info.tmp.01.$$$
 echo -e "`cat /etc/sysconfig/mouse`" >> /tmp/info.tmp.01.$$$
fi
echo -e "---" >> /tmp/info.tmp.01.$$$
echo -e "Computer CPU Information:" >> /tmp/info.tmp.01.$$$
echo -e "---" >> /tmp/info.tmp.01.$$$
cat /proc/cpuinfo >> /tmp/info.tmp.01.$$$

echo -e "--" >> /tmp/info.tmp.01.$$$

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 55

echo -e "Computer Memory Information:" >> /tmp/info.tmp.01.$$$
echo -e "--" >> /tmp/info.tmp.01.$$$
cat /proc/meminfo >> /tmp/info.tmp.01.$$$

if [-d /proc/ide/hda]
then
 echo -e "-------------------------------------" >> /tmp/info.tmp.01.$$$
 echo -e "Hard disk information:" >> /tmp/info.tmp.01.$$$
 echo -e "--------------------------------------" >> /tmp/info.tmp.01.$$$
 echo -e "Model: `cat /proc/ide/hda/model` " >> /tmp/info.tmp.01.$$$
 echo -e "Driver: `cat /proc/ide/hda/driver` " >> /tmp/info.tmp.01.$$$
 echo -e "Cache size: `cat /proc/ide/hda/cache` " >> /tmp/info.tmp.01.$$$
fi
echo -e "--" >> /tmp/info.tmp.01.$$$
echo -e "File System (Mount):" >> /tmp/info.tmp.01.$$$
echo -e "---" >> /tmp/info.tmp.01.$$$
cat /proc/mounts >> /tmp/info.tmp.01.$$$

if which dialog > /dev/null
then
 dialog --backtitle "Linux Software Diagnostics (LSD) Shell Script Ver.1.0" --title
"Press Up/Down Keys to move" --textbox /tmp/info.tmp.01.$$$ 21 70
else
 cat /tmp/info.tmp.01.$$$ |more
fi

rm -f /tmp/info.tmp.01.$$$

Aim : Write a Program that takes one or more file/directory names as command line input

and reports the following information on the file.

A) File type

B) Number of links.

C) Time of last access.

D) Read,Write and Execute permissions.

Program

clear
for i in $*
do
if [-d $i]
then
echo “Given directory name is found as $i”
fi
if [-f $i]
then
echo “Given name is a file as $i “
fi
echo “Type of file/directory $i”
file $i
echo “Last access time is:”
ls -l$i | cut-c 31-46
echo "no.of links"

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 56

ln $i
if [-x $i –a -w $i-a –r $i]
then
echo “$i contains all permission”
else
echo “$i does not contain all permissions”
fi
done

Output:

student@ubuntu:~$sh prg12.sh ff1
given name is file ff1
Type of file/directory ff1
last access time
2012-07-07 10:1
No.of links
ff1 does not contain all permissions

2.16 Program List :

1. Write shell script to display top 10 processes in descending order

2. Write shell script to Display processes with highest memory usage.

3. Write shell script to Display current logged in user and log name.

4. Write shell script to Display current shell, home directory, operating

5. Write shell script to System type, current path setting, and current working directory.

6. Write shell script to Display OS version, release number, kernel version.

7. Write shell script to Illustrate the use of sort, grep, awk, etc.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 57

Module 3 CPU Scheduling Algorithms.

OBJECTIVE :

 To study CPU Scheduling.

 To study CPU Scheduling algorithms such as FCFS, SJF, Priority and Round Robin.

THEORY :

CPU scheduling is the task of selecting a waiting process from the ready queue and

allocating the CPU to it. The CPU is allocated to the selected process by the dispatcher (It

is the module that gives control of the CPU to the processes by short-term scheduler).

Scheduling is a fundamental operating system function.

In a single processor system, only one process can run at a time; any other process must

wait until the CPU is free and can be rescheduled. The objective of multiprogramming is to

have some process running at all times, to maximize CPU utilization.

CPU scheduling decisions may take place under the following four circumstances:

 When a process switches from the running state to the waiting state

 When a process switches from the running state to the ready state.

 When a process switches from the waiting state to the ready state.

 When a process terminates.

Depending on the above circumstances the two types of scheduling are:

1. NON-PREEMPTIVE

2. PREEMPTIVE

1. NON-PREEMPTIVE: Under this scheduling, once the CPU has been allocated to a

process, the process keeps the CPU until it releases the CPU either by terminating or by

switching to the waiting state.

2. PREEMPTIVE: Under this scheduling, once the CPU has been allocated to a process,

the process does not keep the CPU but can be utilized by some other process. This

incurs a cost associated with access to shared data. It also affects the design of the

operating system kernel.

SCHEDULING CRITERIA:

 CPU utilization - It can range from 0-100%.In a real system, it ranges should range from
40- 90%.

 Throughput: Number of processes that are completed per unit time.

 Turnaround time: How long a process takes to execute. It is the sum of the periods
spent waiting to get into memory, waiting in the ready queue, executing on the CPU,
and doing I/O

 Waiting time: It is the sum of the periods spent waiting in the ready queue.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 58

 Response time: Time from the submission of a request until the first response is
produced. It is desirable to maximize CPU utilization and Throughput and minimize
Turnaround time, waiting time and Response time.

3.1 SCHEDULING TECHNIQUES:

 FCFS

 SJF

 PRIORITY

 ROUND ROBIN

3.1.1 FCFS (First-Come, First-Served):

 It is the simplest algorithm and NON-PREEMPTIVE.

 The process that requests the CPU first is allocated the CPU first.

 The implementation is easily managed by queue. When a process enters the ready

queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is allocated

to the process at the head of the queue

 The average waiting time, however, is long. It is not minimal and may vary substantially

if the process’s CPU burst time varies greatly.

 This algorithm is particularly troublesome for time-sharing systems.

3.1.2 SJF (Shortest Job First):

 This algorithm associates with each process the length of the process’s next CPU burst.

When the CPU is available, it is assigned to the process that has the smallest next CPU

burst. If the next CPU bursts of two processes are same, FCFS is used to break the tie.

 It is also called shortest next CPU burst algorithm or shortest remaining time first

scheduling.

 It is provably optimal, in that it gives the minimum average waiting time for a given set of

processes.

 The real difficulty with SJF knows the length of the next CPU request.

 It can be either PREEMPTIVE (SRTF- Shortest Remaining Time First) or NON-

PREEMPTIVE.

3.1.3 PRIORITY SCHEDULING:

 The SJF is a special case of priority scheduling.

 In priority scheduling algorithm, a priority is associated with each process, and the CPU

is allocated to the process with the highest priority.

 Equal-priority processes are scheduled in FCFS order.

 It can be either PREEMPTIVE or NON-PREEMPTIVE.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 59

 Priorities are generally indicated by some fixed range of numbers, such as 0 to 7 or 0 to

4095. However, there is no general agreement on whether 0 is the highest or lowest

priority. Some systems use low numbers to represent low priority; others use low

numbers for high priority. We use as low numbers represent high priority.

 A major problem with priority scheduling algorithms is indefinite blocking, or starvation.

 A solution to starvation is AGING. It is a technique of gradually increasing the priority of

process that wait in the system for long time. For example, if priorities range from 127

(low) to 0 (high), we could increase the priority of a waiting process by 1 every 15

minutes.

3.1.4 ROUND ROBIN SCHEDULING:

 It is designed especially for time-sharing systems.

 It is similar to FCFS, but preemption is added to switch between processes.

 A time quantum is defined.

 The CPU scheduler goes around the ready queue, allocating the CPU to each process

for a time interval of up to 1 time quantum. If a process’s CPU burst exceeds 1 time

quantum, that process is preempted and is put back in the ready queue.

3.2 Scheduling Algorithms Examples

1. First-Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3
Suppose that the processes arrive in the order: P1 , P2 , P3 .The Gantt Chart for the
schedule is

P1 P2 P3

 0 24 27 30

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2 , P3 , P1 .

The Gantt chart for the schedule is:

P2 P3 P1

 0 3 6 30

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 60

Much better than previous case. Convoy effect short process behind long process. So.

Process Burst time waiting time Turnaround time.

P1 24 0 24

P2 3 24 27

P3 3 27 30

Average 17 27

2. Shortest-Job-First (SJR) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to
schedule the process with the shortest time.

 When the CPU is available, it is assigned to the process that has the smallest next CPU
burst. If the next CPU bursts of two processes are the same, FCFS scheduling is used.

As an example of SJF scheduling, consider the following set of processes, with the length
of the CPU burst given in milliseconds:

Process Burst Time Waiting Time Turnaround Time

P1 6 3 9

P2 8 16 24

P3 7 9 16

P4 3 0 3

Average - 7 13

The Gantt chart is as follows

P4 P1 P3 P2

0 3 9 16 24

There are 2 schemes for SJF:

 Non preemptive – once CPU given to the process it cannot be preempted until completes
its CPU burst.

 Preemptive – if a new process arrives with CPU burst length less than remaining time of
current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-
First (SRTF).

SJF is optimal – gives minimum average waiting time for a given set of processes.

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

SJF (non-preemptive)

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 61

Then the Gantt chart for SJF algorithm(Non preemptive) is as follows.

P1 P3 P2 P4

0 7 8 12 16

So

Process Arrival
Time

Burst time waiting time Turnaround
time.

P1 0 7 0 7

P2 2 4 8 12

P3 4 1 7 8

P4 5 4 12 16

Average waiting time = [0 +(8-2)+(7-4) +(12-5)] /4 =4

Example of Preemptive SJF

Proces Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

Then the Gantt chart for SJF algorithm (preemptive)

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16

Average waiting time = (9 + 1 + 0 +2)/4 =3

3. Priority Scheduling

A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest priority (smallest integer =highest
priority).
 1. Preemptive
 2. nonpreemptive
SJF is a priority scheduling where priority is the predicted next CPU burst time.

Problem ≡ Starvation – low priority processes may never execute.
Solution ≡ Aging – as time progresses increase the priority of the process.

As an example, consider the following set of processes, assumed to have arrived at time

0, in the order P1, P2, P3, P4, P5, with the length of the CPU burst given in

milliseconds:

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 62

The Gantt chart is

 0 1 6 16 18 19

So

Process Priority Burst time waiting time Turnaround
time.

P1 3 10 6 16

P2 1 1 0 1

P3 4 2 16 18

P4 5 1 18 19

P5 2 5 1 6

Average 8.2 12

4. Round Robin (RR)

Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.
After this time has elapsed, the process is preempted and added to the end of the ready
queue.

To implement RR scheduling,

 We keep the ready queue as a FIFO queue of processes.

 New processes are added to the tail of the ready queue.

 The CPU scheduler picks the first process from the ready queue, sets a timer to
interrupt after 1 time quantum, and dispatches the process.

 The process may have a CPU burst of less than 1 time quantum.

 In this case, the process itself will release the CPU voluntarily.

 The scheduler will then proceed to the next process in the ready queue.

 Otherwise, if the CPU burst of the currently running process is longer than 1 time
quantum,

 The timer will go off and will cause an interrupt to the OS.

 A context switch will be executed, and the process will be put at the tail of the
ready queue.

 The CPU scheduler will then select the next process in the ready queue.

Performance

 q large _ FIFO

 q small _ q must be large with respect to context switch, otherwise overhead is too high.

P2 P5 P1 P3 P4

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 63

The average waiting time under the RR policy is often long. Consider the following set of
processes that arrive at time 0, with the length of the CPU burst given in milliseconds: (a
time quantum of 4 milliseconds)

Process Burst Time
 P1 24
 P2 3
 P3 3

The Gantt chart is:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Average waiting time = [(30-24)+4+7]/3 = 17/3 =5.66

Process Burst time waiting time Turnaround time.

P1 24 6 30

P2 3 4 7

P3 3 7 10

 Average 5.66 15.66

3.3 IMPLEMENTATION

 FIRST COME FIRST SERVE SCHEDULING ALGORITHM

Step 1: Declare necessary variables.
Step 2: Get the number of processes to be inserted
Step 3: Get the value for burst time of each process from the user
Step 4: Having allocated the burst time(bt) for individual processes , Start
Step 5: with the first process from its initial position let other process to be in queue
Step 6: Calculate the waiting time(wt) and turnaround time(tat) as
Step 7: Wt(pi) = wt(pi-1) + tat(pi-1) (i.e wt of current process = wt of

 previous process + tat of previous process)
Step 8: tat(pi) = wt(pi) + bt(pi) (i.e tat of current process = wt of current
Step 9: process + bt of current process)
Step 10: Calculate the total and average waiting time and turn around time
Step 11: Display the values
Step 12: Stop the process

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 64

 SHORTEST JOB FIST SCHEDULING ALGORITHM
Step 1: Start the process
Step 2: Get the number of processes to be inserted
Step 3: Sort the processes according to the burst time and allocate the one with

 shortest burst to execute first
Step 4: If two process have same burst length then FCFS scheduling algorithm is

 used
Step 5: Calculate the total and average waiting time and turn around time
Step 6: Display the values
Step 7: Stop the process.

 PRIORITY SCHEDULING ALGORITHM

Step 1: Start the process
Step 2: Get the number of processes to be inserted
Step 3: Get the corresponding priority of processes
Step 4: Sort the processes according to the priority and allocate the one with

 highest priority to execute first
Step 5: If two process have same priority then FCFS scheduling algorithm is used
Step 6: Calculate the total and average waiting time and turn around time
Step 7: Display the values
Step 8: Stop the process

 ROUND ROBIN SCHEDULING ALGORITHM

Step 1: Start the process
Step 2: Get the number of elements to be inserted
Step 3: Get the value for burst time for individual processes
Step 4: Get the value for time quantum
Step 5: Make the CPU scheduler go around the ready queue allocating CPU to each

 process for the time interval specified
Step 6: Make the CPU scheduler pick the first process and set time to interrupt after

 quantum. And after it's expiry dispatch the process

Step 7: If the process has burst time less than the time quantum then the process is
 released by the CPU.

Step 8: If the process has burst time greater than time quantum then it is interrupted
 by the OS and the process is put to the tail of ready queue

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 65

Module 5 System Calls

5.1 Process related System call

5.1.1 fork () System call

Used to create new processes. The new process consistsof a copy of the address space

of the original process. The value of process id for the child process is zero, whereas the

value of process id for the parent is an integer value greater than zero.

5.1.2 execlp()

Used after the fork() system call by one of the two processes to replace the process‟

memory space with a new program. It loads a binary file into memory destroying the

memory image of the program containing the execlp system call and starts its execution.

The child process overlays its address space with the UNIX command /bin/ls using the

execlp system call.

5.1.3 wait()

The parent waits for the child process to complete using the wait system call. The wait

system call returns the process identifier of a terminated child, so that the parent can tell

which of its possibly many children has terminated.

5.1.4 exit()

A process terminates when it finishes executing its final statement and asks the operating

system to delete it by using the exit system call. At that point, the process may return data

(output) to its parent process (via the wait system call).

AIM : To write the program to create a Child Process using system call fork().

ALGORITHM :

Step 1 : Declare the variable pid.

Step 2 : Get the pid value using system call fork().

Step 3 : If pid value is less than zero then print as “Fork failed”.

Step 4 : Else if pid value is equal to zero include the new process in the system‟s file using

 execlp system call.

Step 5 : Else if pid is greater than zero then it is the parent process and it waits till the child

completes using the system call wait()

Step 6 : Then print “Child complete”.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 66

PROGRAM CODING :

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>

void main(int argc,char *arg[])
{
int pid;

pid=fork();
if(pid<0)

{
printf("fork failed");
exit(1);
}
else if(pid==0)

{
execlp("whoami","ls",NULL);
exit(0);
}
else
{

printf("\n Process id is -%d\n",getpid());
wait(NULL);
exit(0);

}
}

}

5.1.5 getppid() and getpid() in Linux

Both getppid() and getpid() are inbuilt functions defined in unistd.h library.

 getppid() : returns the process ID of the parent of the calling process. If the calling

process was created by the fork() function and the parent process still exists at the

time of the getppid function call, this function returns the process ID of the parent

process. Otherwise, this function returns a value of 1 which is the process id

for init process.

Syntax: pid_t getppid(void);

Return type: getppid() returns the process ID of the parent of the current process. It

never throws any error therefore is always successful.

#include <iostream>
#include <unistd.h>
using namespace std;

// Driver Code
int main()
{
 int pid;
 pid = fork();

https://www.geeksforgeeks.org/fork-system-call/

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 67

 if (pid == 0)
 {
 cout << "\nParent Process id : "
 << getpid() << endl;
 cout << "\nChild Process with parent id : "
 << getppid() << endl;
 }
 return 0;
}

 getpid() : returns the process ID of the calling process. This is often used by

routines that generate unique temporary filenames.

Syntax: pid_t getpid(void);

Return type: getpid() returns the process ID of the current process. It never throws

any error therefore is always successful.

#include <iostream>
#include <unistd.h>
using namespace std;

// Driver Code
int main()
{
 int pid = fork();
 if (pid == 0)
 cout << "\nCurrent process id of Process : "
 << getpid() << endl;
 return 0;
}

AIM : To write the program to implement the system calls getpid() and getppid().

ALGORITHM :

Step 1 : Declare the variables pid , parent pid , child id and grand chil id.

Step 2 : Get the child id value using system call fork().

Step 3 : If child id value is less than zero then print as “error at fork() child”.

Step 4 : If child id !=0 then using getpid() system call get the process id.

Step 5 : Print “I am parent” and print the process id.

Step 6 : Get the grand child id value using system call fork().

Step 7 : If the grand child id value is less than zero then print as “error at fork() grand

 child”.

Step 8 : If the grand child id !=0 then using getpid system call get the process id.

Step 9 : Assign the value of pid to my pid.

Step 10 : Print “I am child” and print the value of my pid.

Step 11 : Get my parent pid value using system call getppid().

Step 12 : Print “My parent‟s process id” and its value.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 68

Step 13 : Else print “I am the grand child”.

Step 14 : Get the grand child‟s process id using getpid() and print it as “my process id”.

Step 15 : Get the grand child‟s parent process id using getppid() and print it as “my parent‟s

 process id

PROGRAM CODING:

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
int main()
{
int pid;
pid=fork();
if(pid==-1)
{

perror(“fork failed”); exit(0);
}
if(pid==0)
{

printf(“\n Child process is under execution”);
printf(“\n Process id of the child process is %d”, getpid());
printf(“\n Process id of the parent process is %d”, getppid());

}
Else
{

printf(“\n Parent process is under execution”);
printf(“\n Process id of the parent process is %d”, getpid());
printf(“\n Process id of the child process in parent is %d”, pid());
printf(“\n Process id of the parent of parent is %d”, getppid());

}
return(0);

}

5.1.6 getuid() , geteuid(), getgid(), getegid

Syntax:
#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);

Description

The getuid() function returns the real user ID of the calling process. The real user ID

identifies the person who is logged in.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 69

The geteuid() function returns the effective user ID of the calling process. The effective

user ID gives the process various permissions during execution of “set-user-ID” mode

processes which use getuid() to determine the real user ID of the process that invoked

them.

The getgid() function returns the real group ID of the calling process.

#include<stdio.h>
#include<unistd.h>
#include<stdlib.h>
int main(void)
{
printf(“Get a real user ID:%\n”, getuid());
printf(“Get the effective user ID:%\n”, geteuid());
printf(“Get the real group ID:%\n”, getgid());
printf(“Get the effective group ID:%\n”, getegid());
}

5.2 File and Directory related System calls

Basically there are total 5 types of I/O system calls:

5.2.1 create () System Call : Used to Create a new empty file.

Syntax in C language: int creat(char *filename, mode_t mode)

Parameter :

 filename : name of the file which you want to create

 mode : indicates permissions of new file.

Returns :

 return first unused file descriptor (generally 3 when first creat use in process

beacuse 0, 1, 2 fd are reserved) return -1 when error

How it work in OS

 Create new empty file on disk

 Create file table entry

 Set first unused file descriptor to point to file table entry

 Return file descriptor used, -1 upon failure

5.2.2 open () System Call : Used to Open the file for reading, writing or both.

Syntax in C language

#include<sys/types.h>
#includ<sys/stat.h>
#include <fcntl.h>
int open (const char* Path, int flags [, int mode]);

Parameters

 Path : path to file which you want to use absolute path begin with “/”, when

you are not work in same directory of file. Use relative path which is only file

name with extension, when you are work in same directory of file.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 70

 flags : How you like to use

 O_RDONLY: read only,

 O_WRONLY: write only,

 O_RDWR: read and write,

 O_CREAT: create file if it doesn’t exist,

 O_EXCL: prevent creation if it already exists

How it works in OS

 Find existing file on disk

 Create file table entry

 Set first unused file descriptor to point to file table entry

 Return file descriptor used, -1 upon failure

#include<stdio.h>
#include<fcntl.h>
#include<errno.h>
extern int errno;
int main()
{
 // if file does not have in directory, then file foo.txt is created.
 int fd = open("foo.txt", O_RDONLY | O_CREAT);
 printf("fd = %d/n", fd);
 if (fd ==-1)
 { // print which type of error have in a code
 printf("Error Number % d\n", errno);
 // print program detail "Success or failure"
 perror("Program");
 }
 return 0;
}

Output:

fd = 3

5.2.3 Close () System Call :
Tells the operating system you are done with a file descriptor and Close the file

which pointed by fd.

Syntax in C language

#include <fcntl.h>

int close(int fd);

Parameter

fd :file descriptor

Return

 0 on success.

 -1 on error.

How it works in the OS

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 71

 Destroy file table entry referenced by element fd of file descriptor table

– As long as no other process is pointing to it!

 Set element fd of file descriptor table to NULL

// C program to illustrate close system Call
#include<stdio.h>
#include <fcntl.h>
int main()
{
 int fd1 = open("foo.txt", O_RDONLY);
 if (fd1 < 0)
 {
 perror("c1");
 exit(1);
 }
 printf("opened the fd = % d\n", fd1);

 // Using close system Call
 if (close(fd1) < 0)
 {
 perror("c1");
 exit(1);
 }
 printf("closed the fd.\n");
}

Output:

opened the fd = 3

closed the fd.

// C program to illustrate close system Call
#include<stdio.h>
#include<fcntl.h>
int main()
{
 // assume that foo.txt is already created
 int fd1 = open("foo.txt", O_RDONLY, 0);
 close(fd1);

 // assume that baz.tzt is already created
 int fd2 = open("baz.txt", O_RDONLY, 0);

 printf("fd2 = % d\n", fd2);
 exit(0);
}

Output:

fd2 = 3

Here, In this code first open() returns 3 because when main process created, then

fd 0, 1, 2 are already taken by stdin, stdout and stderr. So first unused file descriptor

is 3 in file descriptor table. After that in close() system call is free it this 3 file descriptor

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 72

and then after set 3 file descriptor as null. So when we called second open(), then first

unused fd is also 3. So, output of this program is 3.

5.2.4 Read () System Call :
From the file indicated by the file descriptor fd, the read() function reads cnt bytes of
input into the memory area indicated by buf. A successful read() updates the access
time for the file.
Syntax in C language

 size_t read (int fd, void* buf, size_t cnt);

Parameters

 fd: file descripter

 buf: buffer to read data from

 cnt: length of buffer

Returns: How many bytes were actually read

 return Number of bytes read on success

 return 0 on reaching end of file

 return -1 on error

 return -1 on signal interrupt

Important points

 buf needs to point to a valid memory location with length not smaller than the

specified size because of overflow.

 fd should be a valid file descriptor returned from open() to perform read

operation because if fd is NULL then read should generate error.

 cnt is the requested number of bytes read, while the return value is the actual

number of bytes read. Also, some times read system call should read less

bytes than cnt.

 // C program to illustrate
// read system Call
#include<stdio.h>
#include <fcntl.h>
int main()
{
 int fd, sz;
 char *c = (char *) calloc(100, sizeof(char));

 fd = open("foo.txt", O_RDONLY);
 if (fd < 0) { perror("r1"); exit(1); }

 sz = read(fd, c, 10);
 printf("called read(% d, c, 10). returned that"
 " %d bytes were read.\n", fd, sz);
 c[sz] = '\0';
 printf("Those bytes are as follows: % s\n", c);
}

Output:

called read(3, c, 10). returned that 10 bytes were read.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 73

Those bytes are as follows: 0 0 0 foo.

Suppose that foobar.txt consists of the 6 ASCII characters “foobar”. Then what is the

output of the following program?

// C program to illustrate
// read system Call
#include<stdio.h>
#include<fcntl.h>

int main()
{
 char c;
 int fd1 = Open("foobar.txt", O_RDONLY, 0);
 int fd2 = Open("foobar.txt", O_RDONLY, 0);
 Read(fd1, &c, 1);
 Read(fd2, &c, 1);
 printf("c = % c\n", c);
 exit(0);
}

Output:

c = f

The descriptors fd1 and fd2 each have their own open file table entry, so each

descriptor has its own file position for foobar.txt. Thus, the read from fd2 reads the

first byte of foobar.txt, and the output is c = f, not c = o.

5.2.5 write () System Call :
Writes cnt bytes from buf to the file or socket associated with fd. cnt should not be
greater than INT_MAX (defined in the limits.h header file). If cnt is zero, write()
simply returns 0 without attempting any other action.
Syntax in C language

#include <fcntl.h>
size_t write (int fd, void* buf, size_t cnt);

Parameters

 fd: file descripter

 buf: buffer to write data to

 cnt: length of buffer

Returns: How many bytes were actually written

 return Number of bytes written on success

 return 0 on reaching end of file

 return -1 on error

 return -1 on signal interrupt

Important points

 The file needs to be opened for write operations

 buf needs to be at least as long as specified by cnt because if buf size less

than the cnt then buf will lead to the overflow condition.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 74

 cnt is the requested number of bytes to write, while the return value is the

actual number of bytes written. This happens when fd have a less number of

bytes to write than cnt.

 If write() is interrupted by a signal, the effect is one of the following:

-If write() has not written any data yet, it returns -1 and sets errno to EINTR.

-If write() has successfully written some data, it returns the number of bytes it

wrote before it was interrupted.

// C program to illustrate
// write system Call
#include<stdio.h>
#include <fcntl.h>
main()
{
 int sz;
 int fd = open("foo.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
 if (fd < 0)
 {
 perror("r1");
 exit(1);
 }
 sz = write(fd, "hello geeks\n", strlen("hello geeks\n"));
 printf("called write(% d, \"hello geeks\\n\", %d)."
 " It returned %d\n", fd, strlen("hello geeks\n"), sz);
 close(fd);
}

Output:

called write(3, "hello geeks\n", 12). it returned 11

Here, when you see in the file foo.txt after running the code, you get a “hello geeks“. If

foo.txt file already have some content in it then write system call overwrite the content

and all previous content are deleted and only “hello geeks” content will have in the file.

AIM : To write the program to implement the system calls open(),read() and write().

ALGORITHM :

Step 1 : Declare the structure elements.

Step 2 : Create a temporary file named temp1.

Step 3 : Open the file named “test” in a write mode.

Step 4 : Enter the strings for the file.

Step 5 : Write those strings in the file named “test”.

Step 6 : Create a temporary file named temp2.

Step 7 : Open the file named “test” in a read mode.

Step 8 : Read those strings present in the file “test” and save it in temp2.

Step 9 : Print the strings which are read.

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 75

PROGRAM CODING:
#include<stdio.h>

#include<unistd.h>

#include<string.h>

#include<fcntl.h>

main()

{

int fd[2];

char buf1[25]= ”just a test\n”; char

buf2[50];

fd[0]=open(“file1”, O_RDWR);

fd[1]=open(“file2”, O_RDWR);

write(fd[0], buf1, strlen(buf1));

printf(“\n Enter the text now….”);

gets(buf1);

write(fd[0], buf1, strlen(buf1));

lseek(fd[0], SEEK_SET, 0);

read(fd[0], buf2, sizeof(buf1));

write(fd[1], buf2, sizeof(buf2));

close(fd[0]);

close(fd[1]);

printf(“\n”);

return0;

}

OUTPUT:
Enter the text now….progress
Cat file1 Just a
test progress
Cat file2 Just a test progress

Aim : Implement following commands of Unix in C programming Language.

 A). cat B). ls C). mv

A) cat

#include<sys/types.h>
#include<sys/stat.h>
#include<stdio.h>
#include<fcntl.h>
main(int argc,char *argv[3])
{

int fd,i;
char buf[2];
fd=open(argv[1],O_RDONLY,0777);
if(fd==-argc)
{

printf("file open error");
}
else

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 76

{
while((i=read(fd,buf,1))>0)
{

printf("%c",buf[0]);
}
close(fd);

}
}

Output

student@ubuntu:~$gcc –o prgcat.out prgcat.c
student@ubuntu:~$cat > ff
hello spsu
hello udaipur
student@ubuntu:~$./prgcat.out ff
hello spsu
hello udaipur

B) ls
#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>
#include <stdio.h>
#define FALSE 0
#define TRUE 1
extern int alphasort();
char pathname[MAXPATHLEN];
main()
{

int count,i;
struct dirent **files;
int file_select();
if (getwd(pathname) == NULL)
{

printf("Error getting pathn");
exit(0);

}
printf("Current Working Directory = %sn",pathname);
count = scandir(pathname, &files, file_select, alphasort);
if (count <= 0)
{

printf("No files in this directoryn");
exit(0);

}
printf("Number of files = %dn",count);
for (i=1;i<count 1; i)

printf("%s \n",files[i-1]->d_name);
}
int file_select(struct direct *entry)
{

if ((strcmp(entry->d_name, ".") == 0) ||(strcmp(entry->d_name, "..") == 0))
return (FALSE);

else
return (TRUE);

}

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 77

Output:

Student@ubuntu:~$ gcc list.c
Student@ubuntu:~$./a.out
Current working directory=/home/student/
Number of files=57

C) mv

#include<sys/types.h>
#include<sys/stat.h>
#include<stdio.h>
#include<fcntl.h>
main(int argc,char *argv[])
{

int i,fd1,fd2;
char *file1,*file2,buf[2];
file1=argv[1];
file2=argv[2];
printf("file1=%s file2=%s",file1,file2);
fd1=open(file1,O_RDONLY,0777);
fd2=creat(file2,0777);
while(i=read(fd1,buf,1)>0)

write(fd2,buf,1);
remove(file1);
close(fd1);
close(fd2);

}

Output:

student@ubuntu:~$gcc –o mvp.out mvp.c
student@ubuntu:~$cat > ff
hello spsu
hello udaipur
student@ubuntu:~$./mvp.out ff ff1
student@ubuntu:~$cat ff
cat:ff:No such file or directory
student@ubuntu:~$cat ff1
hello spsu
hello udaipur

AIM: Write a C program to emulate the Unix ls-l command.

Program:

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <stdlib.h>
int main()
{

int pid; //process id
pid = fork(); //create another process
if (pid < 0)
{ //fail

printf(“\nFork failed\n”);
exit (-1);

}
else if (pid == 0)

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 78

{ //child
execlp (“/bin/ls”, “ls”, “-l”, NULL); //execute ls

}
else
{ //parent

wait (NULL); //wait for child
printf(“\nchild complete\n”);
exit (0);

}
}

Output:

guest-glcbIs@ubuntu:~$gcc –o lsc.out lsc.c
guest-glcbIs@ubuntu:~$./lsc.out
total 100
-rwxrwx—x 1 guest-glcbls guest-glcbls 140 2012-07-06 14:55 f1
drwxrwxr-x 4 guest-glcbls guest-glcbls 140 2012-07-06 14:40 dir1
child complete

AIM: Write a C Program that demonstrates redirection of standard output to a file EX:ls>f1.

Program:

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
main(int argc, char *argv[])
{

char d[50];
if(argc==2)
{

bzero(d,sizeof(d));
strcat(d,"ls ");
strcat(d,"> ");
strcat(d,argv[1]);
system(d);

}
else

printf("\nInvalid No. of inputs");
}

output:

student@ubuntu:~$ gcc –o std.out std.c
student@ubuntu:~$ls
downloads documents listing.c listing.out std.c std.out
student@ubuntu:~$ cat > f1
^z
student@ubuntu:~$./std.out f1
student@ubuntu:~$cat f1
downloads
documents
listing.c
listing.out
std.c
std.out

Lab Manual of Operating System Lab 2019

Sir Padampat Singhania University, Udaipur Page 79

AIM:

Write a C program to create a child process and allow the parent to display “parent” and
the child to display “child” on the screen.

Program:

#include <stdio.h>
#include <sys/wait.h> /* contains prototype for wait */
int main(void)
{

int pid;
int status;
printf("Hello World!\n");
pid = fork();
if(pid == -1) /* check for error in fork */
{

perror("bad fork");
exit(1);

}
if (pid == 0)

printf("I am the child process.\n");
else
{

wait(&status); /* parent waits for child to finish */
printf("I am the parent process.\n");

}
}

Output:

student@ubutnu:$gcc –o child.out child.c
student@ubutnu: ./child.out
Hello World!
I am the child process.
I am the parent process

