
Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 1

Chapter 1 Introduction to Computer, Algorithm and

Flowchart:

1.1 Introduction to computer

A Computer is an electronic device that is designed to work with Information. The

term computer is derived from the Latin term ‘computare’, this means to calculate or

programmable machine.

It is an electronic device for storing and processing data, typically in binary form,

according to instructions given to it in a variable program.

Computer cannot do anything without a Program

The basic components of a modern digital computer are: Input Device, Output

Device, Central Processor Unit (CPU), mass storage device and memory. A Typical

modern computer uses LSI Chips.

Input (Data): input is the raw information entered into a computer from the input

devices. It is the collection of letters, numbers, images etc.

Process:
Process is the operation of data as per given instruction. It is totally internal process
of the computer system.

Output:
Output is the processed data given by computer after data processing. Output is also
called as Result. We can save these results in the storage devices for the future use.

1.2 Turing Machine Model of computer

A Turing machine is a mathematical model of computation that defines an abstract

machine, which manipulates symbols on a strip of tape according to a table of rules.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 2

A Turing machine is a general example of a central processing unit (CPU) that

controls all data manipulation done by a computer, using sequential memory to store

data.

The machine operates on an infinite memory tape divided into discrete "cells". On

this tape are symbols, which the machine can read and write, one at a time, using a

tape head. The machine positions its "head" over a cell and "reads" or "scans" the

symbol there. Then, as per the symbol and its present place in a "finite table" of

user-specified instructions, the machine

(i) writes a symbol (e.g., a digit or a letter from a finite alphabet) in the

cell

(ii) either moves the tape one cell left or right then

(iii) Either proceeds to a subsequent instruction or halts the

computation.

The Turing machine was invented in 1936 by Alan Turing, who called it an "a-

machine" (automatic machine). The Turing machine mathematically models a

machine that mechanically operates on a tape.

A Turing machine consists of:

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 3

1. A tape divided into cells, one next to the other. Each cell contains a symbol

from some finite alphabet. The alphabet contains a special blank symbol (here

written as '0') and one or more other symbols. The tape is assumed to be

arbitrarily extendable to the left and to the right, so that the Turing machine is

always supplied with as much tape as it needs for its computation. Cells that

have not been written before are assumed to be filled with the blank symbol.

In some models the tape has a left end marked with a special symbol; the

tape extends or is indefinitely extensible to the right.

2. A head that can read and write symbols on the tape and move the tape left

and right one (and only one) cell at a time.

3. A state register that stores the state of the Turing machine, one of finitely

many.

4. A finite table of instructions that, given the state(qi) the machine is currently

in and the symbol(aj) it is reading on the tape (symbol currently under the

head), tells the machine to do the following in sequence (for the 5-tuple

models):

a. Either erase or write a symbol (replacing aj with aj1).

b. Move the head (which is described by dk and can have values: 'L' for

one step left or 'R' for one step right or 'N' for staying in the same

place).

c. Assume the same or a new state as prescribed (go to state qi1).

1.3 Von Neumann Model of Computer

Von Neumann Architecture also known as the Von Neumann model is a computer

architecture based on that described in 1945 by the mathematician and physicist

John Von Neumann.

He described an architecture for an electronic digital computer with parts consisting

of a central processing unit(CPU): containing an arithmetic logic unit (ALU) and

processor registers, a control unit containing an instruction register and program

counter (PC), a memory to store both data and instructions, external mass storage,

and input and output mechanisms.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 4

Von Neumann architecture is based on the stored-program computer concept,

where instruction data and program data are stored in the same memory. The

meaning has evolved to be any stored-program computer in which an instruction

fetch and a data operation cannot occur at the same time because they share a

common bus.

The program is stored in the memory. The CPU fetches an instruction from the

memory at a time and executes it.

 Modern Computer having three basic units:

1. The Central Processing Unit (CPU)
2. The Main Memory Unit
3. The Input/Output Device

Let’s consider them in details.

 Control Unit –

The control unit controls the operation of the computer’s ALU, memory and

input/output devices, telling them how to respond to the program instructions it

has just read and interpreted from the memory unit.

The control unit also provides the timing and control signals required by other

computer components. A control unit (CU) handles all processor control signals.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 5

It directs all input and output flow, fetches code for instructions and controlling

how data moves around the system.

 Arithmetic and Logic Unit (ALU) –

The arithmetic logic unit is that part of the CPU that handles all the calculations

the CPU may need, e.g. Addition, Subtraction, Comparisons. It performs

Logical Operations, Bit Shifting Operations, and Arithmetic Operation.

 Main Memory Unit–

The memory unit consists of RAM, sometimes referred to as primary or main

memory. Unlike a hard drive (secondary memory); this memory is fast and also

directly accessible by the CPU. Loading data from permanent memory (hard

drive), into the faster and directly accessible temporary memory (RAM), allows

the CPU to operate much quicker.

 CPU Registers–

The CPU contains the ALU, CU and a variety of registers. Registers are high

speed storage areas in the CPU. All data must be stored in a register before it

can be processed.

1. Accumulator: Stores the results of calculations made by ALU.

2. Program Counter (PC): Keeps track of the memory location of the next

instructions to be dealt with. The PC then passes this next address to Memory

Address Register (MAR).

3. Memory Address Register (MAR): It stores the memory locations of

instructions that need to be fetched from memory or stored into memory.

4. Memory Data Register (MDR): It stores instructions fetched from memory or

any data that is to be transferred to, and stored in, memory.

5. Current Instruction Register (CIR): It stores the most recently fetched

instructions while it is waiting to be coded and executed.

6. Instruction Buffer Register (IBR): The instruction that is not to be executed

immediately is placed in the instruction buffer register IBR.

 Input/Output Devices – Program or data is read into main memory from

the input device or secondary storage under the control of CPU input

instruction. Output devices are used to output the information from a computer.

If some results are evaluated by computer and it is stored in the computer, then

with the help of output devices, we can present it to the user.

 Buses – Data is transmitted from one part of a computer to another, connecting

all major internal components to the CPU and memory, by the means of Buses.

A standard CPU system bus is comprised of a control bus, data bus and

address bus.

1. Data Bus: It carries data among the memory unit, the I/O devices, and the

processor.

https://www.computerscience.gcse.guru/glossary/register

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 6

2. Address Bus: It carries the address of data (not the actual data) between

memory and processor.

3. Control Bus: It carries control commands from the CPU (and status signals

from other devices) in order to control and coordinate all the activities within

the computer.

1.4 Introduction to Computer Memory:

A memory is just like a human brain which is used to store data and instructions.

Computer memory is the storage space in the computer, where data is to be

processed and instructions required for processing are stored.

The memory is divided into large number of small parts called cells. Each location or

cell has a unique address, which varies from zero to memory size minus one. For

example, if the computer has 64k words, then this memory unit has 64 * 1024 =

65536 memory locations. The address of these locations varies from 0 to 65535.

Memory is primarily of two types −

 Primary Memory (Main Memory)

 Secondary Memory

1.4.1 Primary Memory (Main Memory)

 Primary memory is directly accessed by the CPU and it holds only those data

and instructions which are required to be processed by the CPU.

 It has a limited capacity.

 These memories are not as fast as registers.

Characteristics of Main Memory

 These are semiconductor memories.

 It is known as the main memory.

 Usually volatile memory.

 Data is lost in case power is switched off.

 It is the working memory of the computer.

 Faster than secondary memories.

 A computer cannot run without the primary memory.

Classification of Primary Memory:

It is divided into two subcategories RAM and ROM.

1.4.1.1 RAM

RAM (Random Access Memory) is the internal memory of the CPU for storing data,
program, and program result.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 7

Data in the RAM can be accessed randomly. Access time in RAM is independent of
the address, that is, each storage location inside the memory is as easy to reach as
other locations and takes the same amount of time.

RAM is small, both in terms of its physical size and in the amount of data it can hold.

It is very expensive.

RAM is volatile, i.e. data stored in it is lost when we switch off the computer or if
there is a power failure.

RAM is of two types −

 Static RAM (SRAM)

 Dynamic RAM (DRAM)

Static RAM (SRAM)

The word static indicates that the memory retains its contents as long as power is

being supplied. However, data is lost when the power gets down due to volatile
nature.

SRAM chips use a matrix of 6-transistors and no capacitors. Transistors do not
require power to prevent leakage, so SRAM need not be refreshed on a regular
basis.

There is extra space in the matrix, hence SRAM uses more space on chips than
DRAM for the same amount of storage space, making the manufacturing costs
higher.

SRAM is thus used as cache memory and has very fast access.

Characteristic of Static RAM
 Long life
 No need to refresh
 Faster
 Used as cache memory
 Large size
 Expensive
 High power consumption

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 8

Dynamic RAM (DRAM)

DRAM, unlike SRAM, must be continually refreshed in order to maintain the data.

This is done by placing the memory on a refresh circuit that rewrites the data
several hundred times per second. DRAM is used for most system memory as it is
cheap and small. All DRAMs are made up of memory cells, which are composed of
one capacitor and one transistor.

Characteristics of Dynamic RAM
 Short data lifetime
 Needs to be refreshed continuously
 Slower as compared to SRAM
 Used as RAM
 Smaller in size
 Less expensive
 Less power consumption

1.4.1.2 ROM

ROM stands for Read Only Memory: The memory from which we can only read but
cannot write on it. This type of memory is non-volatile. The information is stored
permanently in such memories during manufacture. A ROM stores such instructions
that are required to start a computer. This operation is referred to as bootstrap. ROM
chips are not only used in the computer but also in other electronic items like

washing machine and microwave oven.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 9

Let us now discuss the various types of ROMs and their characteristics.

1. MROM (Masked ROM)

The very first ROMs were hard-wired devices that contained a pre-

programmed set of data or instructions. These kinds of ROMs are known as

masked ROMs, which are inexpensive.

2. PROM (Programmable Read Only Memory)

PROM is read-only memory that can be modified only once by a user. The

user buys a blank PROM and enters the desired contents using a PROM

program. Inside the PROM chip, there are small fuses which are burnt open

during programming. It can be programmed only once and is not erasable.

3. EPROM (Erasable and Programmable Read Only Memory)

EPROM can be erased by exposing it to ultra-violet light for duration of up to

40 minutes. Usually, an EPROM eraser achieves this function. During

programming, an electrical charge is trapped in an insulated gate region. The

charge is retained for more than 10 years because the charge has no leakage

path.

For erasing this charge, ultra-violet light is passed through a quartz crystal

window (lid). This exposure to ultra-violet light dissipates the charge. During

normal use, the quartz lid is sealed with a sticker.

4. EEPROM (Electrically Erasable and Programmable Read Only
Memory)
EEPROM is programmed and erased electrically. It can be erased and

reprogrammed about ten thousand times. Both erasing and programming take

about 4 to 10 ms (millisecond). In EEPROM, any location can be selectively

erased and programmed. EEPROMs can be erased one byte at a time, rather

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 10

than erasing the entire chip. Hence, the process of reprogramming is flexible

but slow.

Advantages of ROM

 Non-volatile in nature

 Cannot be accidentally changed

 Cheaper than RAMs

 Easy to test

 More reliable than RAMs

 Static and do not require refreshing

 Contents are always known and can be verified

1.4.2 Secondary Memory

This type of memory is not directly accessed by the CPU that is why it is also known
as external memory or non-volatile. It is slower than the main memory. These are
used for storing data/information permanently. CPU directly does not access these
memories, instead they are accessed via input-output routines. The contents of
secondary memories are first transferred to the main memory, and then the CPU
can access it. For example, disk, CD-ROM, DVD, etc.

Characteristics of Secondary Memory

 These are magnetic and optical memories.

 It is known as the backup memory.

 It is a non-volatile memory.

 Data is permanently stored even if power is switched off.

 It is used for storage of data in a computer.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 11

 Computer may run without the secondary memory.

 Slower than primary memories.

1.5 Introduction to Number System

The number system or the numeral system is the system of naming or representing

numbers. A number system is a collection of various symbols which are called digits.

Number systems are the technique to represent numbers in the computer system

architecture, every value that you are saving or getting into/from computer memory

has a defined number system.

Number systems are of two types:

1. Non-positional number system

2. Positional number system.

1.5.1 Non-Positional Number System

Initially the humans began counting on their fingers. For counting beyond ten, they

started using stones, pebbles or sticks to mark or indicated the value. This kind of

counting uses an additive approach or the Non-positional number.

In this system, we use symbols to indicate the value. Each symbol represents the

same value regardless of its position in a number, and to find value of a number, one

has to count the number of symbols present in the number. For example value one

can be represented with a single line, two with double lines, three with triple lines,

four with four lines and so on.

The disadvantage of using a non-positional number system is that it is very difficult to

perform arithmetic calculations with such a number system.

1.5.2 Positional Number System

In positional number system, there are only a few symbols called digits. A digit is a

numeral symbol, used in combinations, to represent numbers in positional numeral

systems. These symbols represent different values, depending upon the position

they occupy in a number. The value of any digit in a number can be determined by:

 The digit

 Its position in the number

 The base of the number system

Base (Radix) of number system: The base or radix is usually the number of unique

digits, including zero that a positional numeral system uses to represent numbers.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 12

In general, the relationship between a digit, its position and the base of the number

system is expressed by the following formula:

DIGIT * BASE
POSITION

Sometimes, a subscript notation is used where the base number is written in

subscript after the number represented. For example, 238 indicate that the number

23 is expressed in base 8.

The four common positional number systems associated with modern computers

and digital electronics are:

1. Decimal number system (Base 10 number System)
2. Binary number system (Base 2 number system)
3. Octal number system (Base 8 number system)
4. Hexadecimal number system (Base 16 number system)

1.5.2.1 Decimal Number System:

The radix of the decimal number system is 10 i.e. the number is represented by the

successive powers of 10s (in increasing order, starting from 0). The available digits

in the decimal number system are 10 which is equal to the radix of the number

system (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9)

For example- Number (12345)10 is expressed as

5*100 + 4*101 + 3*102 + 2*103 + 1*104

= 5*1 + 4*10 + 3*100 + 2*1000 + 1*10000

= 12345

1.5.2.2 Binary Number System:

The binary system uses only two symbols, 0 and 1. Each digit in a binary number is

known as a binary digit or bit. An example binary number is (11001)2, which is

equivalent to (25)10. The radix of the binary number system is 2 i.e. the number is

represented by the successive powers of 2s (in increasing order, starting from 0).

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 13

The available digits in the binary number system are 2 which is equal to the radix of

the number system (i.e. 0, 1)

For example- Number (10101)2 is expressed as

1*20 + 0*21 + 1*22 + 0*23 + 1*24

= 1*1 + 0*2 + 1*4 + 0*8 + 1*16

= 1 + 0 + 4 + 0 + 16

= 21 (in decimal number system)

1.5.2.3 Octal Number System:

The radix of the octal number system is 8 i.e. the number is represented by the

successive powers of 8s (in increasing order, starting from 0). The available digits in

the octal number system are 8 which is equal to the radix of the number system (i.e.

0, 1, 2, 3, 4, 5, 6, and 7)

For example- Number (12345)8 is expressed as

5*80 + 4*81 + 3*82 + 2*83 + 1*84

= 5*1 + 4*8 + 3*64 + 2*512 + 1*4096

= 5 + 32 + 192 + 1024 + 4096

= 5349 (in decimal number system)

1.5.2.4 Hex Decimal Number System:

The radix of the hex decimal number system is 16 i.e. the number is represented by

the successive powers of 16s (in increasing order, starting from 0). The available

digits in the octal number system are 16 which is equal to the radix of the number

system (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F) where the equivalent no.

of the alphabets are as follows:

A = 10

B = 11

C = 12

D = 13

E = 14

F = 15

For example- Number (12F) 16 is expressed as

15*160 + 2*161 + 1*162

= 15*1 + 2*16 + 1*256

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 14

= 15 + 32 + 256

= 303 (in decimal number system)

1.5.3 Conversion of Number System

1.5.3.1 Decimal to Binary

To convert decimal number to binary, continually divide the number by 2 until the

quotient is zero. The remainders give the binary representation of the number in

reverse order. The remainder being either 0 or 1 forms the binary number with the

last remainder representing the most significant bit.

Example- (14)10 = (1110)2 Remainder

2) 14 0

2) 7 1

2) 3 1

2) 1 1 Read in the Reverse order

0

Example- convert (52)10 into (?)2

52/2 = 26 remainder 0 LSB

26/2 = 13 remainder 0

13/2 = 6 remainder 1

6/2 = 3 remainder 0

3/2 = 1 remainder 1

1/2 = 0 remainder 1 MSB

The answer, therefore, is (110100)2

1.5.3.2 Decimal to Octal

To convert decimal number to octal, continually divide the number by 8 until

the quotient is zero. The remainder being any number from 0, 1, 2, 3, 4, 5, 6,

or 7 forms the octal number with the last remainder representing the most

significant bit. The remainders give the octal representation of the number in

reverse order.

Example- (23)10 = (27)8

Remainder

8) 23 7

8) 2 2 Read in the Reverse order

0

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 15

Example- convert (5819)10 into (?)8

5819/8 = 727 remainder 3 LSB

727/8 = 90 remainder 7

90/8 = 11 remainder 2

11/8 = 1 remainder 3

1/8 = 0 remainder 1 MSB

The answer, therefore, is (13273)8

1.5.3.3 Decimal to Hexadecimal

To convert decimal number to hexadecimal, continually divide the number by

16 until the quotient is zero. The remainder being any number from 0, 1, 2,

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 where the numbers 10, 11, 12, 13,

14, and 15 representing the alphabets A, B, C, D, E, and F respectively forms

the hex decimal number with the last remainder representing the most

significant bit. The remainders give the hexadecimal representation of the

number in reverse order.

Example- (46)10 = (2E) 16

Remainder

16) 46 14 = E

16) 2 2 = 2 Read in the Reverse order

0

Example- converts (3409)10 into (?)8

3409/16 = 213 remainder 1 LSB

213/16 = 13 remainder 5

13/16 = 0 remainder 13 MSB

The answer, therefore, is (D51)16

1.5.3.4 Binary to Decimal

To convert binary number to decimal, multiply the binary digits by the correct power

of 2 from LSB to MSB, and sum them.

Example: (1110)2 = (?)10

(1110)2 = 1 x 23 + 1 x 22 + 1 x 21 + 0 x 20

= 1 x 8 + 1 x 4 + 1 x 2 + 0 x 1

= 8 + 4 + 2

= (14)10

1.5.3.5 Binary to Hexadecimal

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 16

To convert binary number to hexadecimal, binary digits are grouped into fours

starting from the right hand end of the bit pattern and padding the leftmost group with

zeros to make a pattern of four (if necessary). Each group of four is coded as a

single hexadecimal digit similar to converting 4 binary digits to decimal.

Example: (101010) 2 = (2A)16

0010 1010

2 10 (A)

1.5.3.6 Binary to Octal

To convert binary number to octal, binary digits are grouped into threes starting from

the right hand end of the bit pattern and padding the leftmost group with zeros to

make a pattern of three (if necessary). Each group of three is coded as a single octal

digit similar to converting 3 binary digits to decimal.

Example: (11010)2 = (32)8

011 010

 3 2

1.5.3.7 Octal to Decimal

To convert octal number to decimal, multiply the octal digits by the correct power of 8

and sum them.

Example- Number (12345)8 is expressed as

5*80 + 4*81 + 3*82 + 2*83 + 1*84

= 5*1 + 4*8 + 3*64 + 2*512 + 1*4096

= 5 + 32 + 192 + 1024 + 4096

= 5349 (in decimal number system)

1.5.3.8 Octal to Binary

To convert octal number to binary, each octal digit is expanded into the equivalent 3

binary digits.

Example: (32)8 = (011 010)2

(32)8 = 3 2

011 010

1.5.3.9 Hexadecimal to Binary

To convert hexadecimal number to binary, each hexadecimal digit is expanded into

the equivalent 4 binary digits.

Example: (2A) 16 = (0010 1010)2

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 17

(2A)16 = 2 A

0010 1010

1.5.3.10 Hex Decimal to Decimal:

To convert hexadecimal number to decimal, multiply the hexadecimal digits by

the correct power of 16 and sum them.

Example: (2E) 16 = (46) 10

(2E) 16= 2 x 161 + 14 x 160

= 2 x 16 + 14 x 1

= 32 + 14

= 4610

Example: Number (12F) 16 is expressed as

15*160 + 2*161 + 1*162

= 15*1 + 2*16 + 1*256

= 15 + 32 + 256

= 303 (in decimal number system)

The following table describes the relation among all numbers number systems.

1.5.4 Binary Fractions:

In the decimal number system, a fraction may be represented by the use of a

decimal point. Decimal digits to the left of the decimal point represent an ascending

order and those to its right represent a descending order of the power of 10. Thus

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 18

(0.1)10 = 10
-1 = 1/10

(0.01)10 = 10
-2 = 1/102 and so on,

And similarly, for the binary representation of fractions. A binary point is used to

represent a descending order of negative powers of the base 2 (which is equal of the

radix of the binary number system). Hence

(0.1)2 = 2
-1 = ½ and

(0.01)2 = 2
-2 = 1/22

The same method will be followed to handle the octal and hex decimal fractions. An

octal point is used to represent a descending order of negative powers of the base 8

(which is equal of the radix of the octal number system). And similarly, a Hex decimal

point is used to represent a descending order of negative powers of the base 16

(which is equal of the radix of the hex decimal number system).

1.5.5 Binary Arithmetic:

We can perform various arithmetic operations over binary numbers as we do with

decimal numbers like addition, subtraction, multiplication and division. Basic rules for

all these operations are as follows.

1.5.5.1 Binary Addition:

The following are the basic rules for binary addition:

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 19

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0, carry 1.

Example: (11001)2 + (11011)2= (?)2

 1 1 0 0 1

 + 1 1 0 1 1

 1 1 0 1 0 0 Sum

 1 1 1 1 Carry

Where more than two binary numbers are added together, the carry may involve

numbers other than 1. For instance while

1 + 1 = 0, carry 1

1 + 1 + 1 = 1, carry 1

1 + 1 + 1 + 1 = 0, carry 2 and so on.

Example- (10110) 2 + (11101) 2+ (11101) 2 = (?)2

 1 0 1 1 0

 1 1 1 0 1

 + 1 1 1 0 1

__

1 0 1 0 0 0 0 Sum

1 2 2 2 1 1 Carry

1.5.5.2 Binary Subtraction

The following are the basic rules for binary subtraction:

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 20

0 – 0 = 0

1 – 0 = 1

1 – 1 = 0

0 – 1 = 1, borrow 1

Example- Subtract (0101) 2 from (1111) 2= (?)2

 1 1 1 1

 - 0 1 0 1

 1 0 1 0 Result

1.5.5.3 Binary Multiplication

The following are the basic rules for binary multiplication:

0 * 0 = 0

0 * 1 = 0

1 * 0 = 0

1 * 1 = 1

Example- Multiply 1110 by 1101

Multiplicand 1 1 1 0

Multiplier x 1 1 0 1

 1 1 1 0

 0 0 0 0

 1 1 1 0

 1 1 1 0

 1 0 1 1 0 1 1 0

 Product

Example- Multiply 1100 by 1010

Multiplicand 1 1 0 0

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 21

Multiplier x 1 0 1 0

0 0 0 0

1 1 0 0

0 0 0 0

1 1 0 0

1 1 1 1 0 0 0

1.5.5.4 Binary Division

Binary division may be carried out in the same manner as long decimal division is

carried out. For example to divide 110011 (known as the dividend) by 1001 (known

as the divisor) the following procedure is followed:

 Result: 1 0 1

1001) 1 1 0 0 1 1

 -1 0 0 1

 0 0 1 1 1 1

 -1 0 0 1

 1 1 0 (Remainder)

The result therefore is (101)2 with a remainder = (110)2

Division may be also performed by repeated addition of the divisor until the dividend

is reached or a remainder is obtained which is smaller than the dividend.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 22

1.6 Introduction to Operating System

An operating system acts as an interface between the user of a computer and

computer hardware. it is the one program running at all times on the computer

(usually called the kernel), with all else being application programs.

The purpose of an operating system is to provide an environment in which a user

can execute programs in a convenient and efficient manner.

An operating system is a system program that controls the execution of application

programs and acts as an interface between the user of a computer and the computer

hardware.

An Operating System is a resource allocator because It controls and allocates

computing System’s resources and services among the various user and tasks. A

System having different resources such as memory, processors, devices, and

information.

Figure : Conceptual view of operating system

1.6.1 Components of Operating System.

An operating system is a large and complex system that can only be created by

partitioning into small pieces. There are different components of operating system for

controlling and managing different tasks in system.

1. Process Management

2. File Management

3. Main Memory management

4. Secondary-Storage Management

5. Security Management

6. I/O Device Management

7. Network Management

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 23

1.6.1.1 Process Management

The process management component is a procedure for managing the many

processes that are running simultaneously on the operating system. Every software

application program has one or more processes associated with them when they are

running.

The following are functions of process management.

 Process creation and deletion.

 Suspension and resumption.

 Synchronization process

 Communication process

1.6.1.2 File Management

A file is a set of related information which is should define by its creator. It commonly

represents programs, both source and object forms, and data. Data files can be

numeric, alphabetic, or alphanumeric.

The operating system has the following important given activities in connections with

file management:

 File and directory creation and deletion.

 For manipulating files and directories.

 Mapping files onto secondary storage.

 Backup files on stable storage media.

1.6.1.3 Main memory Management

Main Memory is a large array of storage or bytes, which has an address. The

memory management process is conducted by using a sequence of reads or writes

of specific memory addresses.

An Operating System performs the following functions for Memory Management:

 It helps you to keep track of primary memory.

 Determine what part of it are in use by whom, what part is not in use.

 In a multiprogramming system, the OS takes a decision about which process

will get Memory and how much.

 Allocates the memory when a process requests

 It also de-allocates the Memory when a process no longer requires or has

been terminated.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 24

1.6.1.4 Secondary Storage Management

This Memory of the computer is very small to store all data and programs

permanently. The computer system offers secondary storage to back up the main

Memory.

Here, are major functions of secondary storage management in OS:

 Storage allocation

 Free space management

 Disk scheduling

1.6.1.5 Security Management

The various processes in an operating system need to be secured from each other's

activities.

Here, are some other important activities of OS:

 The user's program can't execute I/O operations directly. The operating

system should provide some medium to perform this.

 OS checks the capability of the program to read, write, create, and delete

files.

 OS facilitates an exchange of information between processes executing on

the same or different systems.

 OS components help you to makes sure that you get the correct computing by

detecting errors in the CPU and memory hardware.

1.6.1.6 I/O Device Management

One of the important use of an operating system that helps you to hide the variations

of specific hardware devices from the user.

 It offers buffer caching system

 It provides general device driver code

 It provides drivers for particular hardware devices.

 I/O helps you to knows the individualities of a specific device.

1.6.1.7 Network Management

Network management is the process of administering and managing computer

networks. It includes performance management, fault analysis, provisioning of

networks, and maintaining the quality of service.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 25

1.7 Problem solving Approach

Can you think of a day in your life which goes without problem solving? Answer to

this question is of course, No. In our life we are bound to solve problems. In our day

to day activity such as purchasing something from a general store and making

payments, depositing fee in school, or withdrawing money from bank account. All

these activities involve some kind of problem solving. It can be said that whatever

activity a human being or machine do for achieving a specified objective comes

under problem solving. To make it clearer, let us see some other examples.

Example1: If you are watching a news channel on your TV and you want to change

it to a sports channel, you need to do something i.e. move to that channel by

pressing that channel number on your remote. This is a kind of problem solving.

Example 2: One Monday morning, a student is ready to go to school but yet he/she

has not picked up those books and copies which are required as per timetable. So

here picking up books and copies as per timetable is a kind of problem solving.

Example 3: If someone asks to you, what is time now? So seeing time in your watch

and telling him is also a kind of problem solving.

Example 4: Some students in a class plan to go on picnic and decide to share the

expenses among them. So calculating total expenses and the amount an individual

have to give for picnic is also a kind of problem solving.

If you can solve a given problem then you can also write an algorithm for it. In next

section we will learn what an algorithm is?

1.8 Introduction to Algorithm

Algorithm can be defined as: “A sequence of activities to be processed for getting

desired output from a given input.”

Webopedia defines an algorithm as: “A formula or set of steps for solving a particular

problem. To be an algorithm, a set of rules must be unambiguous and have a clear

stopping point”. There may be more than one way to solve a problem, so there may

be more than one algorithm for a problem.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 26

Now, if we take definition of algorithm as: “A sequence of activities to be processed

for getting desired output from a given input.” Then we can say that:

1. Getting specified output is essential after algorithm is executed.

2. One will get output only if algorithm stops after finite time.

3. Activities in an algorithm to be clearly defined in other words for it to be

unambiguous.

Before writing an algorithm for a problem, one should find out what is/are the inputs

to the algorithm and what is/are expected output after running the algorithm.

Example of Algorithm

Problem 1: Find the area of a Circle of radius r.

Inputs to the algorithm:

Radius r of the Circle.

Expected output:

Area of the Circle

Algorithm:

Step1: Read\input the Radius r of the Circle

Step2: Area=PI*r*r // calculation of area

Step3: Print Area

Problem2: Write an algorithm to read two numbers and find their sum.

Inputs to the algorithm:

First num1.

Second num2.

Expected output:

Sum of the two numbers.

Algorithm:

Step1: Start

Step2: Read\input the first num1.

Step3: Read\input the second num2.

Step4: Sum= num1+num2 // calculation of sum

Step5: Print Sum

Step6: End

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 27

Problem 3: Convert temperature Fahrenheit to Celsius

Inputs to the algorithm:

Temperature in Fahrenheit

Expected output:

Temperature in Celsius

Algorithm:

Step1: Start

Step 2: Read Temperature in Fahrenheit F

Step 3: C = 5/9*(F32)

Step 4: Print Temperature in Celsius: C

Step5: End

1.8.1 Properties of the algorithms

Donald Ervin Knuth has given a list of five properties for a,algorithm, these properties

are:

 Finiteness: An algorithm must always terminate after a finite number of

steps. It means after every step one reach closer to solution of the problem

and after a finite number of steps algorithm reaches to an end point.

 Definiteness: Each step of an algorithm must be precisely defined. It is done

by well thought actions to be performed at each step of the algorithm. Also the

actions are defined unambiguously for each activity in the algorithm.

 Input: Any operation you perform need some beginning value/quantities

associated with different activities in the operation. So the value/quantities are

given to the algorithm before it begins.

 Output: One always expects output/result (expected value/quantities) in

terms of output from an algorithm. The result may be obtained at different

stages of the algorithm. If some result is from the intermediate stage of the

operation then it is known as intermediate result and result obtained at the

end of algorithm is known as end result. The output is expected

value/quantities always have a specified relation to the inputs.

 Effectiveness: Algorithms to be developed/written using basic operations.

Actually operations should be basic, so that even they can in principle be

done exactly and in a finite amount of time by a person, by using paper and

pencil only.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 28

1.9 Introduction to Flow-Chart

The flowchart is a diagram which visually presents the flow of data through

processing systems. This means by seeing a flow chart one can know the operations

performed and the sequence of these operations in a system. Algorithms are nothing

but sequence of steps for solving problems. So a flow chart can be used for

representing an algorithm. A flowchart, will describe the operations (and in what

sequence) are required to solve a given problem. You can see a flow chart as a

blueprint of a design you have made for solving a problem.

For example suppose you are going for a picnic with your friends then you plan for

the activities you will do there. If you have a plan of activities then you know clearly

when you will do what activity. Similarly when you have a problem to solve using

computer or in other word you need to write a computer program for a problem then

it will be good to draw a flowchart prior to writing a computer program. Flowchart is

drawn according to defined rules.

1.9.1 Flowchart Symbols

There are 6 basic symbols commonly used in flowcharting of assembly language

Programs: Terminal, Process, input/output, Decision, Connector and Predefined

Process. This is not a complete list of all the possible flowcharting symbols; it is the

ones used most often in the structure of Assembly language programming.

Symbol Name Function

Process

Indicates any type of internal operation

inside the Processor or Memory

input/output

Used for any Input / Output (I/O)

operation. Indicates that the computer is

to obtain data or output results

Decision

Used to ask a question that can

be answered in a binary format (Yes/No,

True/False)

Connector

Allows the flowchart to be drawn without

intersecting lines or without a reverse

flow.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 29

 Predefined

Process

Used to invoke a subroutine or an

Interrupt program.

Terminal

Indicates the starting or ending of the

program, process, or interrupt program

Flow Lines Shows direction of flow.

1.9.2 General Rules for flowcharting

1. All boxes of the flowchart are connected with Arrows. (Not lines)

2. Flowchart symbols have an entry point on the top of the symbol with no other

entry points. The exit point for all flowchart symbols is on the bottom except

for the Decision symbol.

3. The Decision symbol has two exit points; these can be on the sides or the

bottom and one side.

4. Generally a flowchart will flow from top to bottom. However, an upward flow

can be shown as long as it does not exceed 3 symbols.

5. Connectors are used to connect breaks in the flowchart. Examples are:

a. From one page to another page.

b. From the bottom of the page to the top of the same page.

c. An upward flow of more then 3 symbols

6. Subroutines and Interrupt programs have their own and independent

flowcharts.

7. All flow charts start with a Terminal or Predefined Process (for interrupt

programs or subroutines) symbol.

8. All flowcharts end with a terminal or a contentious loop.

Flowcharting uses symbols that have been in use for a number of years to represent

the type of operations and/or processes being performed. The standardised format

provides a common method for people to visualise problems together in the same

manner. The use of standardised symbols makes the flow charts easier to interpret;

however, standardizing symbols is not as important as the sequence of activities that

make up the process.

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 30

Some examples of Flowcharts

Problem1: Find the area of a circle of radius r.

Problem 2: Convert temperature Fahrenheit to Celsius.

Start

Read

radius R

Calculate

Area=3.14*R*R

End

Print

Area

Start

Read

F

Calculate

C=5/9*(F-32)

End

Print

C

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 31

Problem3: Flowchart for an algorithm which gets two numbers and prints sum

of their value.

Problem 4: Algorithm for find the greater number between two numbers.

Start

Read

 A and B

Calculate

Sum=A+B

End

Print

Sum

Start

Read

 A and B

If
A>B

Print A Print B

End

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 32

1.9.3 Type of Algorithms and Flowcharts

The algorithm and flowchart are classified into three types of control structures.

1. Sequence

2. Decision or Branching (Selection)

3. Loop (Repetition)

1.9.3.1 Sequence

The sequence is exemplified by sequence of statements place one after the other.

In flowcharts, sequence of statements is usually contained in the rectangular process

box.

Example : Write an algorithm to read two numbers and find their sum.

Algorithm:

Step1: Start

Step2: Read\input the first num1.

Step3: Read\input the second num2.

Step4: Sum= num1+num2 // calculation of sum

Step5: Print Sum

Step6: End

1.9.3.2 Decision (Selection)

This structure is also known as the selection structure. The branch refers to a binary

decision based on some condition. If the condition is true, one of the two branches is

explored and if the condition is false, the other alternative is taken. This is usually

represented by the ‘if-then’ construct in pseudo-codes and programs. In flowcharts,

this is represented by the diamond-shaped decision box.

Problem1: write algorithm to find the greater number between two numbers

Step1: Start
Step2: Read/input A and B
Step3: If A greater than B then C=A
Step4: if B greater than A then C=B
Step5: Print C
Step6: End

Problem3: A algorithm to find the largest value of any three numbers.

Step1: Start
Step2: Read/input A,B and C
Step3: If (A>=B) and (A>=C) then Max=A
Step4: If (B>=A) and (B>=C) then Max=B
Step5:If (C>=A) and (C>=B) then Max=C
Step6: Print Max
Step7: End

Structured programming approach (CS-1001) 2020

Sir Padampat Singhania University Page 33

1.9.3.3 Loop (Repetition)

The loop is also known as the repetition structure. The loop allows a statement or a

sequence of statements to be repeatedly executed based on some loop condition.

In the flowcharts, a back arrow hints the presence of a loop. A trip around the loop is

known as iteration. You must ensure that the condition for the termination of the

looping must be satisfied after some finite number of iterations, otherwise it ends up

as an infinite loop.

Examples:

Problem1: An algorithm to calculate even numbers between 0 and 99

1. Start

2. I ← 0

3. Write I in standard output

4. I ← I+2

5. If (I <=98) then go to line 3

6. End

Problem2: Design an algorithm which gets a natural value, n, as its input and

calculates odd numbers equal or less than n. Then write them in the standard output:

1. Start

2. Read n

3. I ← 1

4. Write I

5. I ← I + 2

6. If (I <= n) then go to line 4

7. End

Problem3: Design an algorithm which generates even numbers between 1000 and

2000 and then prints them in the standard output. It should also print total sum:

1. Start

2. I ← 1000 and S ← 0

3. Write I

4. S ← S + I

5. I ← I + 2

6. If (I <= 2000) then go to line 3

else go to line 7

7. Write S

8. End

