Module 1: "Multi-core: The Ultimate Dose of Moore's Law" Lecture 2: "Moore's Law and Multi-cores"

The Lecture Contains:

Moore's Law
Scaling Issues
Multi-core
Thread-level Parallelism
Communication in Multi-core
Tiled CMP (Hypothetical Floor-plan)
Shared Cache CMP
Niagara Floor-plan
Implications on Software
Research Directions
References

Module	1:	"Multi-core:	The	Ultimate	Dose	of	Moore's	Lav
Lecture	2.	"Moore's La	w ar	hd Multi-a	ores"			

Moore's Law:

- Number of transistors on-chip doubles every 18 months
 - · So much of innovation was possible only because we had transistors
 - Phenomenal 58% performance growth every year
- Moore's Law is facing a danger today
 - Power consumption is too high when clocked at multi-GHz frequency and it is proportional to the number of switching transistors
- Wire delay doesn't decrease with transistor size

Scaling Issues:

- Hardware for extracting ILP has reached the point of diminishing return
 - Need a large number of in-flight instructions
 - Supporting such a large population inside the chip requires power-hungry delaysensitive logic and storage
 - Verification complexity is getting out of control
- How to exploit so many transistors?
 - Must be a de-centralized design which avoids long wires

Multi-core:

- Put a few reasonably complex processors or many simple processors on the chip
 - Each processor has its own primary cache and pipeline
 - Often a processor is called a core
 - Often called a chip-multiprocessor (CMP)
- Did we use the transistors properly?
 - Depends on if you can keep the cores busy
 - Introduces the concept of thread-level parallelism (TLP)

Previous Next

Thread-level Parallelism:

- Look for concurrency at a granularity coarser than instructions
 - Put a chunk of consecutive instructions together and call it a thread (largely wrong!)
 - Each thread can be seen as a "dynamic" subgraph of the sequential control-flow graph: take a loop and unroll its graph
 - The edges spanning the subgraphs represent data dependence across threads (the spanning control edges are usually converted to data edges through suitable transformations)
 - The goal of parallelization is to minimize such edges
 - Threads should mostly compute independently on different cores; but need to talk once in a while to get things done!
- Parallelizing sequential programs is fun, but often tedious for non-experts
 - So look for parallelism at even coarser grain
 - Run multiple independent programs simultaneously
 - Known as multi-programming
 - The biggest reason why quotidian Windows fans would buy small-scale multiprocessors and multi-core today
 - Can play games while running heavy-weight simulations and downloading movies
 - Have you seen the state of the poor machine when running anti-virus?

Communication in Multi-core:

- Ideal for shared address space
 - Fast on-chip hardwired communication through cache (no OS intervention)
 - Two types of architectures
 - Tiled CMP: each core has its private cache hierarchy (no cache sharing); Intel Pentium D, Dual Core Opteron, Intel Montecito, Sun UltraSPARC IV, IBM Cell (more specialized)
 - Shared cache CMP: Outermost level of cache hierarchy is shared among cores; Intel Woodcrest (server-grade Core duo), Intel Conroe (Core2 duo for desktop), Sun Niagara, IBM Power4, IBM Power5

🜗 Previous 🛛 Next 🕪

Module 1: "Multi-core: The Ultimate Dose of Moore's Law"		
Tiled CMP (Hypothetical Floor-plan):		
	Previous	Next 🌗

Module 1: "Multi-core: The Ultimate Dose of Moore's Law"	
Lecture 2: "Moore's Law and Multi-cores"	
Shared Cache CMP	
Previous	Next 🌗

Journals: IEEE Micro, IEEE TPDS, ACM TACO

🜗 Previous 🛛 Next 🌗