
Objectives_template

file:///E|/parallel_com_arch/lecture3/3_1.htm[6/13/2012 11:11:50 AM]

 Module 2: "Parallel Computer Architecture: Today and Tomorrow"
 Lecture 3: "Evaluating Performance"

 

The Lecture Contains:

Parallel Computer Architecture: Today and Tomorrow

What is computer architecture ?

Architect’s job

58% growth rate

The computer market

The applications

Parallel architecture

Why parallel arch.?

Why study it?

Performance metrics

Throughput metrics

Application trends

Commercial sector

Desktop market

[From Chapter 1 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture2/2_7.htm


Objectives_template

file:///E|/parallel_com_arch/lecture3/3_2.htm[6/13/2012 11:11:51 AM]

 Module 2: "Parallel Computer Architecture: Today and Tomorrow"
 Lecture 3: "Evaluating Performance"

 

What is computer architecture ?

Amdahl, Blaauw and Brookes, 1964 (IBM 360 team):
The structure of a computer that a machine language programmer must understand to
write a correct (timing independent) program for that machine

Loosely speaking, it is the science of designing computers “leading to glorious failures and
some notable successes”

Architect’s job

Design and engineer various parts of a computer system to maximize performance and
programmability within the technology limits and cost budget
Technology limit could mean process/circuit technology in case of microprocessor architecture
For bigger systems technology limit could mean interconnect technology (how one component
talks to another at macro level)

Slightly outdated data

58% growth rate

Two major architectural reasons
Advent of RISC (Reduced Instruction Set Computer) made it easy to implement many
aggressive architectural techniques for extracting parallelism
Introduction of caches

Made easy by Moore’s law
Two major impacts

Highest performance microprocessors today outperform supercomputers designed less
than 10 years ago
Microprocessor-based products have dominated all sectors of computing: desktops,
workstations, minicomputers are replaced by servers, mainframes are replaced by

 
 
 
 
 
 
 
 
 
 
 
 

 



Objectives_template

file:///E|/parallel_com_arch/lecture3/3_2.htm[6/13/2012 11:11:51 AM]

multiprocessors, supercomputers are built out of commodity microprocessors (also a
cost factor dictated this trend)

 



Objectives_template

file:///E|/parallel_com_arch/lecture3/3_3.htm[6/13/2012 11:11:51 AM]

 Module 2: "Parallel Computer Architecture: Today and Tomorrow"
 Lecture 3: "Evaluating Performance"

 

The computer market

Three major sectors
Desktop: ranges from low-end PCs to high-end workstations; market trend is very
sensitive to price-performance ratio
Server: used in large-scale computing or service-oriented market such as heavy-
weight scientific computing, databases, web services, etc; reliability, availability and
scalability are very important; servers are normally designed for high throughput
Embedded: fast growing sector; very price-sensitive; present in most day-to-day
appliances such as microwave ovens, washing machines, printers, network switches,
palmtops, cell phones, smart cards, game engines; software is usually specialized/tuned
for one particular system

The applications

Very different in three sectors
This difference is the main reason for different design styles in these three areas
Desktop market demands leading-edge microprocessors, high-performance graphics
engines; must offer balanced performance for a wide range of applications; customers
are happy to spend a reasonable amount of money for high performance i.e. the metric
is price-performance
Server market integrates high-end microprocessors into scalable multiprocessors;
throughput is very important; could be floating-point or graphics or transaction
throughput
Embedded market adopts high-end microprocessor techniques paying immense
attention to low price and low power; processors are either general purpose (to some
extent) or application-specific

Parallel architecture

Collection of processing elements that co-operate to solve large problems fast
Design questions that need to be answered

How many processing elements (scalability)?
How capable is each processor (computing power)?
How to address memory (shared or distributed)?
How much addressable memory (address bit allocation)?
How do the processors communicate (through memory or by messages)?
How do the processors avoid data races (synchronization)?
How do you answer all these to achieve highest performance within your cost envelope?

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture3/3_4.htm[6/13/2012 11:11:51 AM]

 Module 2: "Parallel Computer Architecture: Today and Tomorrow"
 Lecture 3: "Evaluating Performance"

 

Why parallel arch.?

Parallelism helps
There are applications that can be parallelized easily
There are important applications that require enormous amount of computation (10 GFLOPS
to 1 TFLOPS)

NASA taps SGI, Intel for Supercomputers: 20 512p SGI Altix using Itanium 2
(http://zdnet.com.com/2100-1103_2-5286156.html) [27th July, 2004]

There are important applications that need to deliver high throughput

Why study it?

Parallelism is ubiquitous
Need to understand the design trade-offs
Microprocessors are now multiprocessors (more later)
Today a computer architect’s primary job is to find out how to efficiently extract
parallelism

Get involved in interesting research projects
Make an impact
Shape the future development
Have fun

Performance metrics

Need benchmark applications
SPLASH (Stanford ParalleL Applications for SHared memory)
SPEC (Standard Performance Evaluation Corp.) OMP
ScaLAPACK (Scalable Linear Algebra PACKage) for message-passing machines
TPC (Transaction Processing Performance Council) for database/transaction
processing performance
NAS (Numerical Aerodynamic Simulation) for aerophysics applications

NPB2 port to MPI for message-passing only
PARKBENCH (PARallel Kernels and BENCHmarks) for message-passing only 

Comparing two different parallel computers
Execution time is the most reliable metric
Sometimes MFLOPS, GFLOPS, TFLOPS are used, but could be misleading

Evaluating a particular machine
Use speedup to gauge scalability of the machine (provided the application itself scales)
Speedup(P) = Uniprocessor time/Time on P processors
Normally the input data set is kept constant when measuring speedup

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture3/3_5.htm[6/13/2012 11:11:51 AM]

 Module 2: "Parallel Computer Architecture: Today and Tomorrow"
 Lecture 3: "Evaluating Performance"

 

Throughput metrics

Sometimes metrics like jobs/hour may be more important than just the turn-around time of a
job

This is the case for transaction processing (the biggest commercial application for
servers)
Needs to serve as many transactions as possible in a given time provided time per
transaction is reasonable
Transactions are largely independent; so throw in as many hardware threads as
possible
Known as throughput computing

Application trends

Equal to or below 1 GFLOPS requirements
2D airfoil, oil reservoir modeling, 3D plasma modeling, 48-hour weather

Below 100 GFLOPS requirements
Chemical dynamics, structural biology, 72-hour weather

Tomorrow’s applications (beyond 100 GFLOPS)
Human genome, protein folding, superconductor modeling, quantum chromodynamics,
molecular geometry, real-time vision and speech recognition, graphics, CAD, space
exploration, global-warming etc.

Demand for insatiable CPU cycles (need large-scale supercomputers)

Commercial sector

Slightly different story
Transactions per minute (tpm)

Scale of computers is much smaller
4P machines to maybe 32P servers

But use of parallelism is tremendous
Need to serve as many transaction threads as possible (maximize the number of
database users)
Need to handle large data footprint and offer massive parallelism (also economics kicks
in: should be low-cost)

Desktop market

Demand to improve throughput for sequential multi-programmed workload
I want to run as many simulations as I can and want them to finish before I come back
next morning
Possibly the biggest application for small-scale multiprocessors (e.g. 2 or 4-way
SMPs)

Even on a uniprocessor machine I would be happy if I could play AOE without affecting the
performance of my simulation running in background (simultaneous multi-threading and chip
multi-processing; more later)

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture4/4_1.htm

	3_1
	Local Disk
	Objectives_template


	3_2
	Local Disk
	Objectives_template


	3_3
	Local Disk
	Objectives_template


	3_4
	Local Disk
	Objectives_template


	3_5
	Local Disk
	Objectives_template



