
Objectives_template

file:///E|/parallel_com_arch/lecture10/10_1.htm[6/13/2012 11:18:07 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 10: "Communication Architecture"

 
Fundamentals of Parallel Computers

Agenda

Communication architecture

Layered architecture

Shared address

Message passing

Convergence

Data parallel arch.

[From Chapter 1 of Culler, Singh, Gupta]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture9/self_assign_ex_sol.html


Objectives_template

file:///E|/parallel_com_arch/lecture10/10_2.htm[6/13/2012 11:18:07 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 10: "Communication Architecture"

 

Agenda

Convergence of parallel architectures
Fundamental design issues
ILP vs. TLP

Communication architecture

Historically, parallel architectures are tied to programming models
Diverse designs made it impossible to write portable parallel software
But the driving force was the same: need for fast processing

Today parallel architecture is seen as an extension of microprocessor architecture with a
communication architecture

Defines the basic communication and synchronization operations and provides hw/sw
implementation of those

Layered architecture

A parallel architecture can be divided into several layers
Parallel applications
Programming models: shared address, message passing, multiprogramming, data
parallel, dataflow etc
Compiler + libraries
Operating systems support
Communication hardware
Physical communication medium

Communication architecture = user/system interface + hw implementation (roughly defined by
the last four layers)

Compiler and OS provide the user interface to communicate between and synchronize
threads

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture10/10_3.htm[6/13/2012 11:18:08 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 10: "Communication Architecture"

 

Shared address

Communication takes place through a logically shared portion of memory
User interface is normal load/store instructions
Load/store instructions generate virtual addresses
The VAs are translated to PAs by TLB or page table
The memory controller then decides where to find this PA
Actual communication is hidden from the programmer

The general communication hw consists of multiple processors connected over some medium
so that they can talk to memory banks and I/O devices

The architecture of the interconnect may vary depending on projected cost and target
performance

Communication medium

Interconnect could be a crossbar switch so that any processor can talk to any memory
bank in one “hop” (provides latency and bandwidth advantages)
Scaling a crossbar becomes a problem: cost is proportional to square of the size
Instead, could use a scalable switch-based network; latency increases and bandwidth
decreases because now multiple processors contend for switch ports

Communication medium
From mid 80s shared bus became popular leading to the design of SMPs
Pentium Pro Quad was the first commodity SMP
Sun Enterprise server provided a highly pipelined wide shared bus for scalability
reasons; it also distributed the memory to each processor, but there was no local bus
on the boards i.e. the memory was still “symmetric” (must use the shared bus)
NUMA or DSM architectures provide a better solution to the scalability problem; the
symmetric view is replaced by local and remote memory and each node (containing
processor(s) with caches, memory controller and router) gets connected via a scalable
network (mesh, ring etc.); Examples include Cray/SGI T3E, SGI Origin 2000, Alpha
GS320, Alpha/HP GS1280 etc.

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture10/10_4.htm[6/13/2012 11:18:08 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 10: "Communication Architecture"

 

Message passing

Very popular for large-scale computing
The system architecture looks exactly same as DSM, but there is no shared memory
The user interface is via send/receive calls to the message layer
The message layer is integrated to the I/O system instead of the memory system
Send specifies a local data buffer that needs to be transmitted; send also specifies a tag
A matching receive at dest. node with the same tag reads in the data from kernel space
buffer to user memory
Effectively, provides a memory-to-memory copy
Actual implementation of message layer

Initially it was very topology dependent
A node could talk only to its neighbors through FIFO buffers
These buffers were small in size and therefore while sending a message send would
occasionally block waiting for the receive to start reading the buffer (synchronous
message passing)
Soon the FIFO buffers got replaced by DMA (direct memory access) transfers so that a
send can initiate a transfer from memory to I/O buffers and finish immediately (DMA
happens in background); same applies to the receiving end also
The parallel algorithms were designed specifically for certain topologies: a big problem

To improve usability of machines, the message layer started providing support for arbitrary
source and destination (not just nearest neighbors)

Essentially involved storing a message in intermediate “hops” and forwarding it to the
next node on the route
Later this store-and-forward routing got moved to hardware where a switch could
handle all the routing activities
Further improved to do pipelined wormhole routing so that the time taken to traverse
the intermediate hops became small compared to the time it takes to push the
message from processor to network (limited by node-to-network bandwidth)
Examples include IBM SP2, Intel Paragon
Each node of Paragon had two i860 processors, one of which was dedicated to
servicing the network (send/recv. etc.)

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture10/10_5.htm[6/13/2012 11:18:08 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 10: "Communication Architecture"

 

Convergence

Shared address and message passing are two distinct programming models, but the
architectures look very similar

Both have a communication assist or network interface to initiate messages or
transactions
In shared memory this assist is integrated with the memory controller
In message passing this assist normally used to be integrated with the I/O, but the
trend is changing
There are message passing machines where the assist sits on the memory bus or
machines where DMA over network is supported (direct transfer from source memory
to destination memory)
Finally, it is possible to emulate send/recv. on shared memory through shared buffers
and flags
Possible to emulate a shared virtual mem. on message passing machines through
modified page fault handlers

Data parallel arch.

Array of processing elements (PEs)
Each PE operates on a data element within a large matrix
The operation is normally specified by a control processor
Essentially, single-instruction-multiple-data (SIMD) architectures
So the parallelism is exposed at the data level
Processor arrays were outplayed by vector processors in mid-70s

Vector processors provide a more general framework to operate on large matrices in a
controlled fashion
No need to design a specialized processor array in a certain topology

Advances in VLSI circuits in mid-80s led to design of large arrays of single-bit PEs
Also, arbitrary communication (rather than just nearest neighbor) was made possible
Gradually, this architecture evolved into SPMD (single-program-multiple-data)

All processors execute the same copy of a program in a more controlled fashion
But parallelism is expressed by partitioning the data
Essentially, the same as the way shared memory or message passing machines are
used for running parallel applications

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture11/11_1.htm

	10_1
	Local Disk
	Objectives_template


	10_2
	Local Disk
	Objectives_template


	10_3
	Local Disk
	Objectives_template


	10_4
	Local Disk
	Objectives_template


	10_5
	Local Disk
	Objectives_template



