Module 2: "Parallel Computer Architecture: Today and Tomorrow	V"	
Lecture 4: "Shared Memory Multiprocessors"		
The Leadure Containe.		
The Lecture Contains:		
Technology trends		
Architectural trends		
Exploiting TLP: NOW		
Supercomputers		
Exploiting TLP: Shared memory		
Shared memory MPs		
Bus-based MPs		
Scaling: DSMs		
On-chip TLP		
E Economics		
Summary		
[From Chapter 1 of Culler, Singh, Gupta]		
	Previous	Next 🌗

Module 2:	"Parallel	Computer	Architecture:	Today	and	Tomorrow
Lecture 4:	"Shared	Memory N	/lultiprocessors	s"		

Technology trends

- The natural building block for multiprocessors is microprocessor
- Microprocessor performance increases 50% every year
- Transistor count doubles every 18 months
 - Intel Pentium 4 EE 3.4 GHz has 178 M transistors on a 237 mm2 die
 - 130 nm Itanium 2 has 410 M transistors on a 374 mm2 die
 - 90 nm Intel Montecito has 1.7 B transistors on a 596 mm2 die
- Die area is also growing
 - Intel Prescott had 125 M transistors on a 112 mm2 die
- Ever-shrinking process technology
 - Shorter gate length of transistors
 - · Can afford to sweep electrons through channel faster
 - Transistors can be clocked at faster rate
 - Transistors also get smaller
 - · Can afford to pack more on the die
 - · And die size is also increasing
 - What to do with so many transistors?
- Could increase L2 or L3 cache size
 - · Does not help much beyond a certain point
 - Burns more power
- Could improve microarchitecture
 - Better branch predictor or novel designs to improve instruction-level parallelism (ILP)
- If cannot improve single-thread performance have to look for thread-level parallelism (TLP)
 - Multiple cores on the die (chip multiprocessors): IBM POWER4, POWER5, Intel Montecito, Intel Pentium 4, AMD Opteron, Sun UltraSPARC IV
- TLP on chip
 - Instead of putting multiple cores could put extra resources and logic to run multiple threads simultaneously (simultaneous multi-threading): Alpha 21464 (cancelled), Intel Pentium 4, IBM POWER5, Intel Montecito
- Today's microprocessors are small-scale multiprocessors (dual-core, 2-way SMT)
- Tomorrow's microprocessors will be larger-scale multiprocessors or highly multi-threaded
 - Sun Niagara is an 8-core (each 4-way threaded) chip: 32 threads on a single chip

Architectural trends

- Circuits: bit-level parallelism
 - Started with 4 bits (Intel 4004) [http://www.intel4004.com/]
 - Now 32-bit processor is the norm
 - 64-bit processors are taking over (AMD Opteron, Intel Itanium, Pentium 4 family); started with Alpha, MIPS, Sun families
- Architecture: instruction-level parallelism (ILP)
 - Extract independent instruction stream
 - Key to advanced microprocessor design
 - Gradually hitting a limit: memory wall
 - Memory operations are bottleneck
 - Need memory-level parallelism (MLP)

- Also technology limits such as wire delay are pushing for a more distributed control rather than the centralized control in today's processors
- If cannot boost ILP what can be done?
- Thread-level parallelism (TLP)
 - Explicit parallel programs already have TLP (inherent)
 - Sequential programs that are hard to parallelize or ILP-limited can be speculatively parallelized in hardware

• Thread-level speculation (TLS)

 Today's trend: if cannot do anything to boost single-thread performance invest transistors and resources to exploit TLP

🜗 Previous 🛛 Next 🌗

Module 2: "Parallel Computer Architecture: Today and Tomorrow" Lecture 4: "Shared Memory Multiprocessors"

Exploiting TLP: NOW

- Simplest solution: take the commodity boxes, connect them over gigabit ethernet and let them talk via messages
 - The simplest possible message-passing machine
 - Also known as Network of Workstations (NOW)
 - Normally PVM (Parallel Virtual Machine) or MPI (Message Passing Interface) is used for programming
 - Each processor sees only local memory
 - Any remote data access must happen through explicit messages (send/recv calls trapping into kernel)
- Optimizations in the messaging layer are possible (user level messages, active messages)

Supercomputers

- Historically used for scientific computing
- Initially used vector processors
- But uniprocessor performance gap of vector processors and microprocessors is narrowing down
 - Microprocessors now have heavily pipelined floating-point units, large on-chip caches, modern techniques to extract ILP
- Microprocessor based supercomputers come in large-scale: 100 to 1000 (called massively parallel processors or MPPs)
- However, vector processor based supercomputers are much smaller scale due to cost disadvantage
 - Cray finally decided to use Alpha μP in T3D

Exploiting TLP: Shared memory

- Hard to build, but offers better programmability compared to message-passing clusters
- The "conventional" load/store architecture continues to work
- Communication takes place through load/store instructions
- Central to design: a cache coherence protocol
 - Handling data coherency among different caches
- Special care needed for synchronization

Module 2: "Parallel Computer Architecture: Today and Tomorrow" Lecture 4: "Shared Memory Multiprocessors"

On-chip TLP

- Current trend:
 - Tight integration
 - Minimize communication latency (data communication is the bottleneck)
- Since we have transistors
 - Put multiple cores on chip (Chip multiprocessing)
 - They can communicate via either a shared bus or switch-based fabric on-chip (can be custom designed and clocked faster)
 - Or put support for multiple threads without replicating cores (Simultaneous multi-threading)
 - Both choices provide a good cost/performance trade-off

Economics

- Ultimately who controls what gets built?
- It is cost vs. performance trade-off
- Given a time budget (to market) and a revenue projection, how much performance can be afforded
- Normal trend is to use commodity microprocessors as building blocks unless there is a very good reason
 - Reuse existing technology as much as possible
- Large-scale scientific computing mostly exploits message-passing machines (easy to build, less costly); even google uses same kind of architecture [use commodity parts]
- Small to medium-scale shared memory multiprocessors are needed in the commercial market (databases)
- Although large-scale DSMs (256 or 512 nodes) are built by SGI, demand is less

Summary

- Parallel architectures will be ubiquitous soon
 - Even on desktop (already we have SMT/HT, multi-core)
 - · Economically attractive: can build with COTS (commodity-off-the-shelf) parts
 - · Enormous application demand (scientific as well as commercial)
 - More attractive today with positive technology and architectural trends
 - Wide range of parallel architectures: SMP servers, DSMs, large clusters, CMP, SMT, CMT, ...
 - Today's microprocessors are, in fact, complex parallel machines trying to extract ILP as well as TLP

🜗 Previous 🛛 Next 🌗