
Objectives_template

file:///E|/parallel_com_arch/lecture5/5_1.htm[6/13/2012 11:13:29 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 5: "Pipelining and Hazards"

The Lecture Contains:

RECAP: SINGLE-THREADED EXECUTION

Long history

Single-threaded execution

CPI equation: analysis

Life of an instruction

Multi-cycle execution

Pipelining

More on pipelining

Control hazard

Branch delay slot

What else can we do?

Branch prediction

Data hazards

More on RAW

Multi-cycle EX stage

WAW hazard

Overall CPI

Multiple issue

file:///E|/parallel_com_arch/lecture4/4_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_2.htm[6/13/2012 11:13:29 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 5: "Pipelining and Hazards"

Long history

Starting from long cycle/multi-cycle execution
Big leap: pipelining

Started with single issue
Matured into multiple issue

Next leap: speculative execution
Out-of-order issue, in-order completion

Today’s microprocessors feature
Speculation at various levels during execution
Deep pipelining
Sophisticated branch prediction
And many more performance boosting hardware

Single-threaded execution

Goal of a microprocessor
Given a sequential set of instructions it should execute them correctly as fast as
possible
Correctness is guaranteed as long as the external world sees the execution in-order
(i.e. sequential)
Within the processor it is okay to re-order the instructions as long as the changes to
states are applied in-order

Performance equation
Execution time = average CPI × number of instructions × cycle time

CPI equation: analysis

To reduce the execution time we can try to lower one or more the three terms
Reducing average CPI (cycles per instruction):

The starting point could be CPI=1
But complex arithmetic operations e.g. multiplication/division take more than a cycle
Memory operations take even longer
So normally average CPI is larger than 1
How to reduce CPI is the core of this lecture

Reducing number of instructions
Better compiler, smart instruction set architecture (ISA)

Reducing cycle time: faster clock

Life of an instruction

Fetch from memory
Decode/read (figure out the opcode, source and dest registers, read source registers)
Execute (ALUs, address calculation for memory op)
Memory access (for load/store)
Writeback or commit (write result to destination reg)
During execution the instruction may talk to

Register file (for reading source operands and writing results)
Cache hierarchy (for instruction fetch and for memory op)

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_2.htm[6/13/2012 11:13:29 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_3.htm[6/13/2012 11:13:29 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 5: "Pipelining and Hazards"

Multi-cycle execution

Simplest implementation
Assume each of five stages takes a cycle
Five cycles to execute an instruction
After instruction i finishes you start fetching instruction i+1
Without “long latency” instructions CPI is 5

Alternative implementation
You could have a five times slower clock to accommodate all the logic within one cycle
Then you can say CPI is 1 excluding mult/div, mem op
But overall execution time really doesn’t change

What can you do to lower the CPI?

Pipelining

Simple observation
In the multi-cycle implementation when the ALU is executing, say, an add instruction
the decoder is idle
Exactly one stage is active at any point in time
Wastage of hardware

Solution: pipelining
Process five instructions in parallel
Each instruction is in a different stage of processing
Each stage is called a pipeline stage
Need registers between pipeline stages to hold partially processed instructions (called
pipeline latches): why?

More on pipelining

What do you gain?
Parallelism: called instruction-level parallelism (ILP)
Ideal CPI of 1 at the same clock speed as multi-cycle implementation: ideally 5 times
reduction in execution time

What are the problems?
Slightly more complex
Control and data hazards
These hazards put a limit on available ILP

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_4.htm[6/13/2012 11:13:30 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 5: "Pipelining and Hazards"

Control hazard

Branches pose a problem

Two pipeline bubbles: increases average CPI
Can we reduce it to one bubble?

Branch delay slot

MIPS R3000 has one bubble
Called branch delay slot
Exploit clock cycle phases
On the positive half compute branch condition
On the negative half fetch the target

The PC update hardware (selection between target and next PC) works on the lower edge
Can we utilize the branch delay slot?

Ask the compiler guy
The delay slot is always executed (irrespective of the fate of the branch)
Boost instructions common to fall through and target paths to the delay slot
Not always possible to find
You have to be careful also
Must boost something that does not alter the outcome of fall-through or target basic
blocks
If the BD slot is filled with useful instruction then we don’t lose anything in CPI;
otherwise we pay a branch penalty of one cycle

What else can we do?

Branch prediction
We can put a branch target cache in the fetcher
Also called branch target buffer (BTB)
Use the lower bits of the instruction PC to index the BTB
Use the remaining bits to match the tag
In case of a hit the BTB tells you the target of the branch when it executed last time
You can hope that this is correct and start fetching from that predicted target provided
by the BTB

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_4.htm[6/13/2012 11:13:30 AM]

One cycle later you get the real target, compare with the predicted target, and throw
away the fetched instruction in case of misprediction; keep going if predicted correctly

Branch prediction

BTB will work great for
Loop branches
Subroutine calls
Unconditional branches

Conditional branch prediction
Rather dynamic in nature
The last target is not very helpful in general (if-then-else)
Need a direction predictor (predicts taken or not taken)
Once that prediction is available we can compute the target

Return address stack (RAS): push/pop interface

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_5.htm[6/13/2012 11:13:30 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 5: "Pipelining and Hazards"

Data hazards

Data dependency in instruction stream limits ILP
True dependency (Read After Write: RAW)

Need a bypass network to avoid losing cycles
Without the bypass the fetching of subtraction would have to be delayed by three cycles
This is an example of RAW hazard

More on RAW

The most problematic dependencies involve memory ops
The memory ops may take a large number of cycles to return the value (if missed in cache)

This type of dependencies is the primary cause of increase in CPI and lower ILP

Multi-cycle EX stage

Thus far we have assumed a single cycle EX
Consider multiplication and division
Assume a four-cycle multiplication unit: mult r5, r4, r3 IF ID EX1 EX2 EX3 EX4 MEM
WB
Normally the multiplier is separate
So the next instruction can start executing when mult moves to EX2 stage and, in fact,
can finish before mult

More data hazards

Objectives_template

file:///E|/parallel_com_arch/lecture5/5_6.htm[6/13/2012 11:13:30 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 5: "Pipelining and Hazards"

WAW hazard

Write After Write (WAW)

The problem: out-of-order completion
The final value in r5 will nullify the effect of the add instruction
The bigger issue: precise exception is violated
Next load instruction raises an exception (may be due to page fault)
You handle the exception and start from the load
But value in r5 does not reflect precise state
Solution: disallow out-of-order completion

Overall CPI

CPI = 1.0 + pipeline overhead
Pipeline overhead comes from

Branch penalty (useless delay slots, mispredictions)
True data dependencies
Multi-cycle instructions (load/store, mult/div)
Other data hazards

So to boost CPI further
Need to have better branch prediction
Need to hide latency of memory ops, mult/div

Multiple issue

Thus far we have assumed that at most one instruction gets advanced to EX stage every cycle
If we have four ALUs we can issue four independent instructions every cycle
This is called superscalar execution
Ideally CPI should go down by a factor equal to issue width (more parallelism)
Extra hardware needed:

Wider fetch to keep the ALUs fed
More decode bandwidth, more register file ports; decoded instructions are put in an
issue queue
Selection of independent instructions for issue
In-order completion

file:///E|/parallel_com_arch/lecture6/6_1.htm

	5_1
	Local Disk
	Objectives_template

	5_2
	Local Disk
	Objectives_template

	5_3
	Local Disk
	Objectives_template

	5_4
	Local Disk
	Objectives_template

	5_5
	Local Disk
	Objectives_template

	5_6
	Local Disk
	Objectives_template

