
Objectives_template

file:///E|/parallel_com_arch/lecture6/6_1.htm[6/13/2012 11:14:27 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 6: "Instruction Issue Algorithms"

The Lecture Contains:

Instruction selection

In-order multi-issue

Out-of-order issue

WAR hazard

Modified bypass

WAR and WAW

Register renaming

The pipeline

What limits ILP now?

Cycle time reduction

Alternative: VLIW

Current research in µP

file:///E|/parallel_com_arch/lecture5/5_6.htm

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_2.htm[6/13/2012 11:14:27 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 6: "Instruction Issue Algorithms"

Instruction selection

Simplest possible design
Issue the instructions sequentially (in-order)
Scan the issue queue, stop as soon as you come to an instruction dependent on one
already issued

Cannot issue the last two even though they are independent of the first two: in-order
completion is a must for precise exception support

In-order multi-issue

Complexity of selection logic
Need to check for RAW and WAW
Comparisons for RAW: N(N-1) where N is the issue width
Comparisons for WAW: N(N-1)/2
18 comparators for 4-issue

Still need to make sure instructions write back in-order to support precise exception
As instructions issue, they are removed from the issue queue and put in a re-order
buffer (also called active list in MIPS processors) [Isn’t WAW check sufficient?]
Instructions write back or retire in-order from re-order buffer (ROB)

Out-of-order issue

Taking the parallelism to a new dimension
Central to all modern microprocessors
Scan the issue queue completely, select independent instructions and issue as many as
possible limited only by the number of functional units
Need more comparators
Able to extract more ILP: CPI goes down further
Possible to overlap the latency of mult/div, load/store with execution of other independent
instructions

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_2.htm[6/13/2012 11:14:27 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_3.htm[6/13/2012 11:14:27 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 6: "Instruction Issue Algorithms"

WAR hazard

Modified bypass

An executing instruction must broadcast results to the issue queue
Waiting instructions compare their source register numbers with the destination register
number of the bypassed value
Also, now it needs to make sure that it is consuming the right value in program order to
avoid WAR

Need to tag every instruction with its last producer
Can we simplify this?

WAR and WAW

These are really false dependencies
Arises due to register allocation by the compiler

Thus far we have assumed that ROB has space to hold the destination values: needs wide
ROB entries
These values are written back to the register file when the instructions retire or commit in-
order from ROB
Also, bypass becomes complicated
Better way to solve it: rename the destination registers

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_3.htm[6/13/2012 11:14:27 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_4.htm[6/13/2012 11:14:28 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 6: "Instruction Issue Algorithms"

Register renaming

Registers visible to the compiler
Logical or architectural registers
Normally 32 in number for RISC and is fixed by the ISA

Physical registers inside the processor
Much larger in number

The destination logical register of every instruction is renamed to a physical register number
The dependencies are tracked based on physical registers
MIPS R10000 has 32 logical and 64 physical regs
Intel Pentium 4 has 8 logical and 128 physical regs

Now it is safe to issue them in parallel: they are really independent (compiler introduced
WAW)
Register renaming maintains a map table that records logical register to physical register map
After an instruction is decoded, its logical register numbers are available
The renamer looks up the map table to find mapping for the logical source regs of this
instruction, assigns a free physical register to the destination logical reg, and records the new
mapping
If the renamer runs out of physical registers, the pipeline stalls until at least one register is
available
When do you free a physical register?

Suppose a physical register P is mapped to a logical register L which is the destination
of instruction I
It is safe to free P only when the next producer of L retires (Why not earlier?)

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_4.htm[6/13/2012 11:14:28 AM]

More physical registers
more in-flight instructions
possibility of more parallelism

But cannot make the register file very big
Takes time to access
Burns power

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_5.htm[6/13/2012 11:14:28 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 6: "Instruction Issue Algorithms"

The pipeline

Fetch, decode, rename, issue, register file read, ALU, cache, retire
Fetch, decode, rename are in-order stages, each handles multiple instructions every cycle
The ROB entry is allocated in rename stage
Issue, register file, ALU, cache are out-of-order
Retire is again in-order, but multiple instructions may retire each cycle: need to free the
resources and drain the pipeline quickly

What limits ILP now?

Instruction cache miss (normally not a big issue)
Branch misprediction

Observe that you predict a branch in decode, and the branch executes in ALU
There are four pipeline stages before you know outcome
Misprediction amounts to loss of at least 4F instructions where F is the fetch width

Data cache miss
Assuming a issue width of 4, frequency of 3 GHz, memory latency of 120 ns, you need
to find 1440 independent instructions to issue so that you can hide the memory latency:
this is impossible (resource shortage)

Cycle time reduction

Execution time = CPI × instruction count × cycle time
Talked about CPI reduction or improvement in IPC (instructions retired per cycle)
Cycle time reduction is another technique to boost performance

Faster clock frequency
Pipelining poses a problem

Each pipeline stage should be one cycle for balanced progress
Smaller cycle time means need to break pipe stages into smaller stages

Superpipelining
Faster clock frequency necessarily means deep pipes
Each pipe stage contains small amount of logic so that it fits in small cycle time
May severely degrade CPI if not careful
Now branch penalty is even bigger (31 cycles for Intel Prescott): branch mispredictions
cause massive loss in performance (93 micro-ops are lost, F=3)
Long pipes also put more pressure on resources such as ROB and registers because
instruction latency increases (in terms of cycles, not in absolute terms)
Instructions occupy ROB entries and registers longer
The design becomes increasingly complicated (long wires)

Objectives_template

file:///E|/parallel_com_arch/lecture6/6_6.htm[6/13/2012 11:14:28 AM]

 Module 3: "Recap: Single-threaded Execution"
 Lecture 6: "Instruction Issue Algorithms"

Alternative: VLIW

Very Long Instruction Word computers
Compiler carries out all dependence analysis
Bundles as many independent instructions as allowed by the number of functional units
into an instruction packet
Hardware is a lot less complex
The instructions in the packet issue in parallel
Each packet of instructions is pretty long (hence the name)
Problem: compiler may not be able to extract as much ILP as a dynamic out-of-order
core; many packets may go unutilized

Big leap from VLIW: EPIC (Explicitly Parallel Instruction Computing) [Itanium family]

Current research in µP

Micro-architectural techniques to extract more ILP
Directly helps improve IPC and reduce CPI
Various speculative techniques to hide cache miss latency: prefetching, load value
prediction, etc.

Better branch prediction
Helps deep pipelines

Faster clocking
Need to cool the chip
Various techniques to reduce power consumption: clock gating, dynamic
voltage/frequency scaling (DVFS), power-aware resource usage
Fighting the long wires: scaling micro-architectures against the complexity wall

file:///E|/parallel_com_arch/lecture7/7_1.htm

	6_1
	Local Disk
	Objectives_template

	6_2
	Local Disk
	Objectives_template

	6_3
	Local Disk
	Objectives_template

	6_4
	Local Disk
	Objectives_template

	6_5
	Local Disk
	Objectives_template

	6_6
	Local Disk
	Objectives_template

