
Objectives_template

file:///E|/parallel_com_arch/lecture7/7_1.htm[6/13/2012 11:15:59 AM]

 Module 4: "Recap: Virtual Memory and Caches"
 Lecture 7: "Virtual Memory, TLB, and Caches"

 

RECAP: VIRTUAL MEMORY AND CACHE

Why virtual memory?

Virtual memory

Addressing VM

VA to PA translation

Page fault

VA to PA translation

TLB

Caches

Addressing a cache

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture6/6_6.htm


Objectives_template

file:///E|/parallel_com_arch/lecture7/7_2.htm[6/13/2012 11:16:00 AM]

 Module 4: "Recap: Virtual Memory and Caches"
 Lecture 7: "Virtual Memory, TLB, and Caches"

 

Why virtual memory?

With a 32-bit address you can access 4 GB of physical memory (you will never get the full
memory though)

Seems enough for most day-to-day applications
But there are important applications that have much bigger memory footprint:
databases, scientific apps operating on large matrices etc.
Even if your application fits entirely in physical memory it seems unfair to load the full
image at startup
Just takes away memory from other processes, but probably doesn’t need the full
image at any point of time during execution: hurts multiprogramming

Need to provide an illusion of bigger memory: Virtual Memory (VM)

Virtual memory

Need an address to access virtual memory
Virtual Address (VA)

Assume a 32-bit VA
Every process sees a 4 GB of virtual memory
This is much better than a 4 GB physical memory shared between multiprogrammed
processes
The size of VA is really fixed by the processor data path width
64-bit processors (Alpha 21264, 21364; Sun UltraSPARC; AMD Athlon64, Opteron;
IBM POWER4, POWER5; MIPS R10000 onwards; Intel Itanium etc., and recently Intel
Pentium4) provide bigger virtual memory to each process
Large virtual and physical memory is very important in commercial server market: need
to run large databases

Addressing VM

There are primarily three ways to address VM
Paging, Segmentation, Segmented paging
We will focus on flat paging only

Paged
The entire VM is divided into small units called pages
Virtual pages are loaded into physical page frames as and when needed
(demand paging)
Thus the physical memory is also divided into equal sized page frames
The processor generates virtual addresses
But memory is physically addressed: need a VA to PA translation

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture7/7_3.htm[6/13/2012 11:16:00 AM]

 Module 4: "Recap: Virtual Memory and Caches"
 Lecture 7: "Virtual Memory, TLB, and Caches"

 

VA to PA translation

The VA generated by the processor is divided into two parts:
Page offset and Virtual page number (VPN)
Assume a 4 KB page: within a 32-bit VA, lower 12 bits will be page offset (offset within
a page) and the remaining 20 bits are VPN (hence 1 M virtual pages total)
The page offset remains unchanged in the translation
Need to translate VPN to a physical page frame number (PPFN)
This translation is held in a page table resident in memory: so first we need to
access this page table
How to get the address of the page table?

Accessing the page table
The Page table base register (PTBR) contains the starting physical address of the
page table
PTBR is normally accessible in the kernel mode only
Assume each entry in page table is 32 bits (4 bytes)
Thus the required page table address is

Access memory at this address to get 32 bits of data from the page table entry (PTE)
These 32 bits contain many things: a valid bit, the much needed PPFN (may be 20 bits
for a 4 GB physical memory), access permissions (read, write, execute), a
dirty/modified bit etc.

Page fault

The valid bit within the 32 bits tells you if the translation is valid
If this bit is reset that means the page is not resident in memory: results in a page fault
In case of a page fault the kernel needs to bring in the page to memory from disk
The disk address is normally provided by the page table entry (different interpretation of 31
bits)
Also kernel needs to allocate a new physical page frame for this virtual page
If all frames are occupied it invokes a page replacement policy

VA to PA translation

Page faults take a long time: order of ms
Need a good page replacement policy

Once the page fault finishes, the page table entry is updated with the new VPN to PPFN
mapping
Of course, if the valid bit was set, you get the PPFN right away without taking a page fault
Finally, PPFN is concatenated with the page offset to get the final PA 
Processor now can issue a memory request with this PA to get the necessary data
Really two memory accesses are needed
Can we improve on this?

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture7/7_4.htm[6/13/2012 11:16:00 AM]

 Module 4: "Recap: Virtual Memory and Caches"
 Lecture 7: "Virtual Memory, TLB, and Caches"

 

TLB

Why can’t we cache the most recently used translations?
Translation Look-aside Buffers (TLB)
Small set of registers (normally fully associative)
Each entry has two parts: the tag which is simply VPN and the corresponding PTE
The tag may also contain a process id
On a TLB hit you just get the translation in one cycle (may take slightly longer
depending on the design)
On a TLB miss you may need to access memory to load the PTE in TLB (more later)
Normally there are two TLBs: instruction and data

Caches

Once you have completed the VA to PA translation you have the physical address. What’s
next?
You need to access memory with that PA
Instruction and data caches hold most recently used (temporally close) and nearby (spatially
close) data
Use the PA to access the cache first
Caches are organized as arrays of cache lines
Each cache line holds several contiguous bytes (32, 64 or 128 bytes)

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///E|/parallel_com_arch/lecture7/7_5.htm[6/13/2012 11:16:00 AM]

 Module 4: "Recap: Virtual Memory and Caches"
 Lecture 7: "Virtual Memory, TLB, and Caches"

 

Addressing a cache

The PA is divided into several parts

The block offset determines the starting byte address within a cache line
The index tells you which cache line to access
In that cache line you compare the tag to determine hit/miss

An example
PA is 32 bits
Cache line is 64 bytes: block offset is 6 bits
Number of cache lines is 512: index is 9 bits
So tag is the remaining bits: 17 bits
Total size of the cache is 512*64 bytes i.e. 32 KB
Each cache line contains the 64 byte data, 17-bit tag, one valid/invalid bit, and several
state bits (such as shared, dirty etc.)
Since both the tag and the index are derived from the PA this is called a physically
indexed physically tagged cache

 
 
 
 
 
 
 
 
 
 
 
 

 

 

file:///E|/parallel_com_arch/lecture8/8_1.htm

	7_1
	Local Disk
	Objectives_template


	7_2
	Local Disk
	Objectives_template


	7_3
	Local Disk
	Objectives_template


	7_4
	Local Disk
	Objectives_template


	7_5
	Local Disk
	Objectives_template



