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Set associative cache

The example assumes one cache line per index
Called a direct-mapped cache
A different access to a line evicts the resident cache line
This is either a capacity or a conflict miss

Conflict misses can be reduced by providing multiple lines per index
Access to an index returns a set of cache lines

For an n-way set associative cache there are n lines per set
Carry out multiple tag comparisons in parallel to see if any one in the set hits

2-way set associative

Set associative cache

When you need to evict a line in a particular set you run a replacement policy
LRU is a good choice: keeps the most recently used lines (favors temporal locality)
Thus you reduce the number of conflict misses

Two extremes of set size: direct-mapped (1-way) and fully associative (all lines are in a single
set)

Example: 32 KB cache, 2-way set associative, line size of 64 bytes: number of indices
or number of sets=32*1024/(2*64)=256 and hence index is 8 bits wide
Example: Same size and line size, but fully associative: number of sets is 1, within the
set there are 32*1024/64 or 512 lines; you need 512 tag comparisons for each access
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Cache hierarchy

Ideally want to hold everything in a fast cache
Never want to go to the memory

But, with increasing size the access time increases
A large cache will slow down every access
So, put increasingly bigger and slower caches between the processor and the memory
Keep the most recently used data in the nearest cache: register file (RF)
Next level of cache: level 1 or L1 (same speed or slightly slower than RF, but much bigger)
Then L2: way bigger than L1 and much slower
Example: Intel Pentium 4 (Netburst)

128 registers accessible in 2 cycles
L1 date cache: 8 KB, 4-way set associative, 64 bytes line size, accessible in 2 cycles
for integer loads
L2 cache: 256 KB, 8-way set associative, 128 bytes line size, accessible in 7 cycles

Example: Intel Itanium 2 (code name Madison)
128 registers accessible in 1 cycle
L1 instruction and data caches: each 16 KB, 4-way set associative, 64 bytes line size,
accessible in 1 cycle
Unified L2 cache: 256 KB, 8-way set associative, 128 bytes line size, accessible in 5
cycles
Unified L3 cache: 6 MB, 24-way set associative, 128 bytes line size, accessible in 14
cycles

States of a cache line

The life of a cache line starts off in invalid state (I)
An access to that line takes a cache miss and fetches the line from main memory
If it was a read miss the line is filled in shared state (S) [we will discuss it later; for now just
assume that this is equivalent to a valid state]
In case of a store miss the line is filled in modified state (M); instruction cache lines do not
normally enter the M state (no store to Icache)
The eviction of a line in M state must write the line back to the memory (this is called a
writeback cache); otherwise the effect of the store would be lost

Inclusion policy

A cache hierarchy implements inclusion if the contents of level n cache (exclude the register
file) is a subset of the contents of level n+1 cache

Eviction of a line from L2 must ask L1 caches (both instruction and data) to invalidate
that line if present
A store miss fills the L2 cache line in M state, but the store really happens in L1 data
cache; so L2 cache does not have the most up-to-date copy of the line
Eviction of an L1 line in M state writes back the line to L2
Eviction of an L2 line in M state first asks the L1 data cache to send the most up-to-
date copy (if any), then it writes the line back to the next higher level (L3 or main
memory)
Inclusion simplifies the on-chip coherence protocol (more later)
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The first instruction

Accessing the first instruction
Take the starting PC
Access iTLB with the VPN extracted from PC: iTLB miss
Invoke iTLB miss handler
Calculate PTE address
If PTEs are cached in L1 data and L2 caches, look them up with PTE address: you will
miss there also
Access page table in main memory: PTE is invalid: page fault
Invoke page fault handler
Allocate page frame, read page from disk, update PTE,  load PTE in iTLB, restart fetch

Now you have the physical address
Access Icache: miss
Send refill request to higher levels: you miss everywhere
Send request to memory controller (north bridge)
Access main memory
Read cache line
Refill all levels of cache as the cache line returns to the processor
Extract the appropriate instruction from the cache line with the block offset

This is the longest possible latency in an instruction/data access

TLB access

For every cache access (instruction or data) you need to access the TLB first
Puts the TLB in the critical path
Want to start indexing into cache and read the tags while TLB lookup takes place

Virtually indexed physically tagged cache
Extract index from the VA, start reading tag while looking up TLB
Once the PA is available do tag comparison
Overlaps TLB reading and tag reading

Memory op latency

L1 hit: ~1 ns
L2 hit: ~5 ns
L3 hit: ~10-15 ns
Main memory: ~70 ns DRAM access time + bus transfer etc. = ~110-120 ns
If a load misses in all caches it will eventually come to the head of the ROB and block
instruction retirement (in-order retirement is a must)
Gradually, the pipeline backs up, processor runs out of resources such as ROB entries and
physical registers
Ultimately, the fetcher stalls: severely limits ILP
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MLP

Need memory-level parallelism (MLP)
Simply speaking, need to mutually overlap several memory operations

Step 1: Non-blocking cache
Allow multiple outstanding cache misses
Mutually overlap multiple cache misses
Supported by all microprocessors today (Alpha 21364 supported 16 outstanding cache
misses)

Step 2: Out-of-order load issue
Issue loads out of program order (address is not known at the time of issue)
How do you know the load didn’t issue before a store to the same address? Issuing
stores must check for this memory-order violation

Out-of-order loads

sw  0(r7), r6
… /* other instructions */
lw  r2, 80(r20)

Assume that the load issues before the store because r20 gets ready before r6 or r7
The load accesses the store buffer (used for holding already executed store values before
they are committed to the cache at retirement)
If it misses in the store buffer it looks up the caches and, say, gets the value somewhere
After several cycles the store issues and it turns out that 0(r7)==80(r20) or they overlap; now
what?

Load/store ordering

Out-of-order load issue relies on speculative memory disambiguation
Assumes that there will be no conflicting store
If the speculation is correct, you have issued the load much earlier and you have
allowed the dependents to also execute much earlier
If there is a conflicting store, you have to squash the load and all the dependents that
have consumed the load value and re-execute them systematically
Turns out that the speculation is correct most of the time
To further minimize the load squash, microprocessors use simple memory dependence
predictors (predicts if a load is going to conflict with a pending store based on that
load’s or load/store pairs’ past behavior)
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MLP and memory wall

Today microprocessors try to hide cache misses by initiating early prefetches:
Hardware prefetchers try to predict next several load addresses and initiate cache line
prefetch if they are not already in the cache
All processors today also support prefetch instructions; so you can specify in your
program when to prefetch what: this gives much better control compared to a hardware
prefetcher

Researchers are working on load value prediction
Even after doing all these, memory latency remains the biggest bottleneck
Today microprocessors are trying to overcome one single wall: the memory wall
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