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MIPS R10000

A case study in modern microarchitecture

Overview

Stage 1: Fetch

Stage 2: Decode/Rename

Branch prediction

Branch predictor

Register renaming

Preparing to issue

Stage 3: Issue

Load-dependents

Functional units

Result writeback

Retirement or commit

[Reference: K. C. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, 16(2): 28-40, April 1996.]
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Overview

Mid 90s: One of the first dynamic out-of-order superscalar RISC microprocessors
6.8 M transistors on 298 mm2 die (0.35 µm CMOS)
Out of 6.8 M transistors 4.4 M are devoted to L1 instruction and data caches
Fetches, decodes, renames 4 instructions every cycle
64-bit registers: the data path width is 64 bits
On-chip 32 KB L1 instruction and data caches, 2-way set associative
Off-chip L2 cache of variable size (512 KB to 16 MB), 2-way set associative, line size 128
bytes

Stage 1: Fetch

The instructions are slightly pre-decoded when the cache line is brought into Icache
Simplifies the decode stage

Processor fetches four sequential instructions every cycle from the Icache
The iTLB has eight entries, fully associative
No BTB
So the fetcher really cannot do anything about branches other than fetching sequentially

Stage 2: Decode/Rename

Decodes and renames four instructions every cycle
The targets of branches, unconditional jumps, and subroutine calls (named jump and link or
jal) are computed in this stage
Unconditional jumps are not fed into the pipeline and the fetcher PC is modified directly by
the decoder
Conditional branches look up a simple predictor to predict the branch direction (taken or not
taken) and accordingly modify the fetch PC
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Branch prediction

Branches are predicted and unconditional jumps are computed in stage 2
There is always a one-cycle bubble (four instructions)

In case of branch misprediction (which will be detected later) the processor may need to roll
back and restart fetching from the correct target

Need to checkpoint (i.e. save) the register map right after the branch is renamed (will
be needed to restore in case of misprediction)

The processor supports at most four register map checkpoints; this is stored in a structure
called branch stack (really, it is a FIFO queue, not a stack)

Can support up to four in-flight branches

Branch predictor

The predictor is an array of 512 two-bit saturating counters
Can count up to 3; if already 3, an increment does not have any effect (remains at 3)
Similarly, if the count is 0, a decrement does not have any effect (remains at 0)

The array is indexed by PC[11:3]
Ignore lower 3 bits, take the next 9 bits
The outcome is the count at that index of the predictor

If count >= 2 then predict taken; else not taken
Very simple algorithm; prediction accuracy of 85+% on most benchmarks; works fine for short
pipes
Commonly known as bimodal branch predictor
The branch predictor is updated when a conditional branch retires (in-order update because
retirement is in-order)

At retirement we know the correct outcome of the branch
So we use that to train the predictor
If the branch is taken the count in the index for that branch is incremented (remains at
3 if already 3)
If the branch is not taken the count is decremented (remains at zero if already 0)

This predictor will fail to predict many simple patterns including alternating branches
depending on where the count starts

Register renaming

Takes place in the second pipeline stage
As we have discussed, every destination is assigned a new physical register from the free list
The sources are assigned the existing map
Map table is updated with the newly renamed dest.
For every destination physical register, a busy bit is set high to signify that the value in this
register is not yet ready; this bit is cleared after the instruction completes execution
The integer and floating-point instructions are assigned registers from two separate free lists

The integer and fp register files are separate (each has 64 registers)
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Preparing to issue

Finally, during the second stage every instruction is assigned an active list entry
The active list is a 32-entry FIFO queue which keeps track of all in-flight instructions
(at most 32) in-order
Each entry contains various info about the allocated instruction such as physical dest
reg number etc.

Also, each instruction is assigned to one of the three issue queues depending on its type
Integer queue: holds integer ALU instructions
Floating-point queue: holds FPU instructions
Address queue: holds the memory operations

Therefore, stage 2 may stall if the processor runs out of: active list entries, physical regs,
issue queue entries

Stage 3: Issue

Three issue queue selection logics work in parallel
Integer and fp queue issue logics are similar
Integer issue logic

Integer queue contains 16 entries (can hold at most 16 instructions)
Search for ready-to-issue instructions among these 16
Issue at most two instructions to two ALUs

Address queue
Slightly more complicated
When a load or a store is issued the address is still not known
To simplify matters, R10000 issues load/stores in-order (we have seen problems
associated with out-of-order load/store issue)

Load-dependents

The loads take two cycles to execute
During the first cycle the address is computed
During the second cycle the dTLB and data cache are accessed
Ideally I want to issue an instruction dependent on the load so that the instruction can
pick up the load value from the bypass just in time
Assume that a load issues in cycle 0, computes address in cycle 1, and looks up cache
in cycle 2
I want to issue the dependent in cycle 2 so that it can pick up the load value just
before executing in cycle 3
Thus the load looks up cache in parallel with the issuing of the dependent; the
dependent is issued even before it is known whether the load will hit in
the cache; this is called load hit speculation (re-execute later if the load misses)
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Functional units

Right after an instruction is issued it reads the source operands (dictated by physical reg
numbers) from the register file (integer or fp depending on instruction type)
From stage 4 onwards the instructions execute

Two ALUs: branch and shift can execute on ALU1, multiply/divide can execute on
ALU2, all other instructions can execute on any of the two ALUs; ALU1 is responsible
for triggering rollback in case of branch misprediction (marks all instructions after the
branch as squashed, restores the register map from correct branch stack entry, sets
fetch PC to the correct target)
Four FPUs: one dedicated for fp multiply, one for fp divide, one for fp square root, most
of the other instructions execute on the remaining FPU
LSU (Load/store unit): Address calc. ALU, dTLB is fully assoc. with 64 entries and
translates 44-bit VA to 40-bit PA, PA is used to match dcache tags (virtually indexed
physically tagged)

Result writeback

As soon as an instruction completes execution the result is written back to the destination
physical register

No need to wait till retirement since the renamer has guaranteed that this physical
destination is associated with a unique instruction in the pipeline

Also the results are launched on the bypass network (from outputs of ALU/FPU/dcache to
inputs of ALU/FPU/address calculation ALUs)

This guarantees that dependents can be issued back-to-back and still they can receive
the correct value
add r3, r4, r5; add r6, r4, r3; (can be issued in consecutive cycles, although the second
add will read a wrong value of r3 from the register file)

Retirement or commit

Immediately after the instructions finish execution, they may not be able to leave the pipe
In-order retirement is necessary for precise exception

When an instruction comes to the head of the active list it can retire
R10k retires 4 instructions every cycle
Retirement involves

Updating the branch predictor and freeing its branch stack entry if it is a branch
instruction
Moving the store value from the speculative store buffer entry to the L1 data cache if it
is a store instruction
Freeing old destination physical register and updating the register free list
And, finally, freeing the active list entry itself
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Self-assessment Exercise

These problems should be tried after module 05 is completed.

1. Consider the following memory organization of a processor. The virtual
address is 40 bits, the physical address is 32 bits, the page size is 8 KB. The
processor has a 4-way set associative 128-entry TLB i.e. each way has 32 sets.
Each page table entry is 32 bits in size. The processor also has a 2-way set
associative 32 KB L1 cache with line size of 64 bytes.

(A) What is the total size of the page table?
(B) Clearly show (with the help of a diagram) the addressing scheme if the
cache is virtually indexed and physically tagged. Your diagram should show the
width of TLB and cache tags.
(C) If the cache was physically indexed and physically tagged, what part of the
addressing scheme would change?

2. A set associative cache has longer hit time than an equally sized direct-
mapped cache. Why?

3. The Alpha 21264 has a virtually indexed virtually tagged instruction cache.
Do you see any security/protection issues with this? If yes, explain and offer a
solution. How would you maintain correctness of such a cache in a multi-
programmed environment?

4. Consider the following segment of C code for adding the elements in each
column of an NxN matrix A and putting it in a vector x of size N.

for(j=0;j<N;j++) {
for(i=0;i<N;i++) {
x[j] += A[i][j];
}
}

Assume that the C compiler carries out a row-major layout of matrix A i.e. A[i][j]
and A[i][j+1] are adjacent to each other in memory for all i and j in the legal
range and A[i][N-1] and A[i+1][0] are adjacent to each other for all i in the legal
range. Assume further that each element of A and x is a floating point double
i.e. 8 bytes in size. This code is executed on a modern speculative out-of-order
processor with the following memory hierarchy: page size 4 KB, fully associative
128-entry data TLB, 32 KB 2-way set associative single level data cache with
32 bytes line size, 256 MB DRAM. You may assume that the cache is virtually
indexed and physically tagged, although this information is not needed to
answer this question. For N=8192, compute the following (please show all the
intermediate steps). Assume that every instruction hits in the instruction cache.
Assume LRU replacement policy for physical page frames, TLB entries, and
cache sets.

(A) Number of page faults.
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(B) Number of data TLB misses.
(C) Number of data cache misses. Assume that x and A do not conflict with
each other in the cache.
(D) At most how many memory operations can the processor overlap before
coming to a halt? Assume that the instruction selection logic (associated with
the issue unit) gives priority to older instructions over younger instructions if both
are ready to issue in a cycle.

5. Suppose you are running a program on two machines, both having a single
level of cache hierarchy (i.e. only L1 caches). In one machine the cache is
virtually indexed and physically tagged while in the other it is physically indexed
and physically tagged. Will there be any difference in cache miss rates when the
program is run on these two machines?
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Solution of Self-assessment Exercise

1. Consider the following memory organization of a processor. The virtual
address is 40 bits, the physical address is 32 bits, the page size is 8 KB. The
processor has a 4-way set associative 128-entry TLB i.e. each way has 32 sets.
Each page table entry is 32 bits in size. The processor also has a 2-way set
associative 32 KB L1 cache with line size of 64 bytes.

(A) What is the total size of the page table?

Solution: The physical memory is 2^32 bytes, since the physical address is 32
bits. Since the page size is 8 KB, the number of pages is (2^32)/(2^13) i.e.,
2^19. Since each page table entry is four bytes in size and each page must
have one page table entry, the size of the page table is (2^19)*4 bytes or 2 MB.

(B) Clearly show (with the help of a diagram) the addressing scheme if the
cache is virtually indexed and physically tagged. Your diagram should show the
width of TLB and cache tags.

Solution: I will describe the addressing scheme here. You can derive the
diagram from that. The processor generates 40-bit virtual addresses for memory
operations. This address must be translated to a physical address that can be
used to look up the memory (through the caches). The first step in this
translation is TLB lookup. Since the TLB has 32 sets, the index width for TLB
lookup is five bits. The lowest 13 bits of the virtual address constitute the page
offset and are not used for TLB lookup. The next lower five bits are used for
indexing into the TLB. This leaves the upper 22 bits of the virtual address to be
used as the TLB tag. On a TLB hit, the TLB entry provides the necessary page
table entry, which is 32 bits in width. On a TLB miss, the page table entry must
be read from the page table resident in memory or cache. Nonetheless, the net
effect of whichever path is taken is that we have the 32-bit page table entry.
From these 32 bits, the necessary 19-bit physical page frame number is
extracted (recall that the number of physical pages is 2^19). When the 13-bit
page offset is concatenated to this 19-bit frame number, we get the target
physical address. We must first look up the cache to check if the data
corresponding to this address is already resident there before querying the
memory. Since the cache is virtually indexed and physically tagged, the cache
lookup can start at the same time as TLB lookup. The cache has (2^15)/(64*2)
or 256 sets. So eight bits are needed to index the cache. The lower six bits of
the virtual address are the block offset and not used for cache indexing. The
next eight bits are used as cache index. The tags resident at both the ways of
this set are read out. The target tag is computed from the physical address and
must be compared against both the read out tags to test for a cache hit. Let's
try to understand how the target tag is computed from the physical address that
we have formed above with the help of the page table entry. Usually, the tag is
derived by removing the block offset and cache index bits from the physical
address. So, in this case, it is tempting to take the upper 18 bits of the physical
address as the cache tag. Unfortunately, this does not work for virtually indexed
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physically tagged cache where the page offset is smaller than the block offset
plus cache index. In this particular example, they differ by one bit. Let's see what
the problem is. Consider a two different cache blocks residing at the same
cache index v derived from the virtual address. This means that these blocks
have identical lower 14 bits of the virtual address. This guarantees that these
two blocks will have identical lower 13 bits of physical address because virtual
to physical address translation does not change page offset bits. However,
nothing stops these two blocks from having identical upper 18 bits of the
physical address, but different 14th bit. Now, it is clear why the traditional tag
computation would make mistakes in identifying the correct block. So the cache
tag must also include the 14th bit. In other words, the cache tag needs to be
identical to the physical page frame number. This completes the cache lookup.
On a cache miss, the 32-bit physical address must be sent to memory for
satisfying the cache miss.

(C) If the cache was physically indexed and physically tagged, what part of the
addressing scheme would change?

Solution: Almost everything remains unchanged, except that the cache index
comes from the physical address now. As a result, the cache lookup cannot
start until the TLB lookup completes. The cache tag now can be only upper 18
bits of the physical address.

2. A set associative cache has longer hit time than an equally sized direct-
mapped cache. Why?

Solution: Iso-capacity direct-mapped cache has wider index decoder than a
set associative cache. So index decoding takes longer in the direct-mapped
cache. However, in set associative cache, a multiplexing stage is needed to
choose from the possible candidates within the target set based on tag
comparison outcome. While the decoder width falls logarithmically with set-
associativity, the multiplexer width grows linearly. For example, a k-way set
associative cache would require log(k) less index bits compared to an iso-
capacity direct-mapped cache, but the multiplexing stage of the set associative
cache would require a k-to-1 multiplexer. Overall, the multiplexer delay
outweighs the gain in the decoder delay.

3. The Alpha 21264 has a virtually indexed virtually tagged instruction cache.
Do you see any security/protection issues with this? If yes, explain and offer a
solution. How would you maintain correctness of such a cache in a multi-
programmed environment?

Solution: The main purpose of having a virtually indexed virtually tagged
instruction cache is to get rid of the TLB from the instruction lookup path.
However, this also removes the much-needed protection provided by the TLB
entries. For example, now buggy codes can easily overwrite the instructions in
the instruction cache. The minimal solution to this problem would still retain the
read-write-execute permission bits in a TLB-like structure. This is essentially a
translation-less TLB. In a multi-programmed environment, it becomes difficult to
distinguish codes belonging to different processes in a virtually indexed virtually
tagged cache because every process has the same virtual address map. Two
possible solutions exist. On a context switch, one can flush the entire instruction
cache. This may slightly elongate the context switch time and the process that is
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switching in will see the cold start effect. Another solution would incorporate
process id in the cache tag. However, this may increase the cache latency
depending on the width of the process id. In general, it is very difficult to say
which one is going to be better and depends on the class of applications that
will run.

4. Consider the following segment of C code for adding the elements in each
column of an NxN matrix A and putting it in a vector x of size N.

for(j=0;j<N;j++) {
for(i=0;i<N;i++) {
x[j] += A[i][j];
}
}

Assume that the C compiler carries out a row-major layout of matrix A i.e., A[i][j]
and A[i][j+1] are adjacent to each other in memory for all i and j in the legal
range and A[i][N-1] and A[i+1][0] are adjacent to each other for all i in the legal
range. Assume further that each element of A and x is a floating point double
i.e., 8 bytes in size. This code is executed on a modern speculative out-of-order
issue processor with the following memory hierarchy: page size 4 KB, fully
associative 128-entry data TLB, 32 KB 2-way set associative single level data
cache with 32 bytes line size, 256 MB DRAM. You may assume that the cache
is virtually indexed and physically tagged, although this information is not
needed to answer this question. For N=8192, compute the following (please
show all the intermediate steps). Assume that every instruction hits in the
instruction cache. Assume LRU replacement policy for physical page frames,
TLB entries, and cache sets.

(A) Number of page faults.

Solution: The total size of x is 64 KB and the total size of A is 512 MB. So,
these do not fit in the physical memory, which is of size 256 MB. Also, we note
that one row of A is of size 64 KB. As a result, every row of A starts on a new
page. As the computation starts, the first outer loop iteration suffers from one
page fault due to x and 8192 page faults due to A. Since one page can hold 512
elements of x and A, the next 511 outer loop iterations do not take any page
faults. The j=512 iteration again suffers from one page fault in x and 8192 fresh
page faults in A. This pattern continues until the memory gets filled up. At this
point we need to invoke the replacement policy, which is LRU. As a result, the
old pages of x and A will get replaced to make room for the new ones. Instead
of calculating the exact iteration point where the memory gets exhausted, we
only note that the page fault pattern continues to hold even beyond this point.
Therefore, the total number of page faults is 8193*(8192/512) or 8193*16 or
131088.

(B) Number of data TLB misses.

Solution: The TLB can hold 128 pages at a time. The TLB gets filled up at j=0,
i=126 with one translation for x[0] and 127 translations for A[0][0] to A[0][126]. At
this point, the LRU replacement policy is invoked and it replaces the translations
of A. The translation of x[0] does not get replaced because it is touched in every
inner loop iteration. By the time the j=0 iteration is finished, only the last 127
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translations of A survive in the TLB. As a result, every access of A suffers from
a TLB miss because A is never able to reuse TLB translations because the
reuse distance exceeds the TLB reach. On the other hand, x enjoys maximum
possible reuse in the TLB. Therefore, every page of x suffers from exactly one
TLB miss, while every access of A suffers from a TLB miss. So, the total
number of TLB misses is 16+8192*8192 or 16+64M.

(C) Number of data cache misses. Assume that x and A do not conflict with
each other in the cache.

Solution: In this case also, x enjoys maximum reuse, while A suffers from a
cache miss on every access. This is because the number of blocks in the cache
is 1024, which is much smaller than the reuse distance in A. One cache block
can hold four elements of x. As a result, x takes a cache miss on every fourth
element. So, the total number of cache misses is 2048+8192*8192 or 2K+64M.

(D) At most how many memory operations can the processor overlap before
coming to a halt? Assume that the instruction selection logic (associated with
the issue unit) gives priority to older instructions over younger instructions if both
are ready to issue in a cycle.

Solution: Since every access of A suffers from a TLB miss and the TLB
misses are usually implemented as restartable exceptions, there cannot be any
overlap among multiple memory operations. A typical iteration would involve load
of x, TLB miss followed by load of A, addition, and store to x. No two memory
operations can overlap because the middle one always suffers from a TLB miss
leading to a pipe flush.

5. Suppose you are running a program on two machines, both having a single
level of cache hierarchy (i.e. only L1 caches). In one machine the cache is
virtually indexed and physically tagged while in the other it is physically indexed
and physically tagged. Will there be any difference in cache miss rates when the
program is run on these two machines?

Solution: Depending on how the application is written, the virtually indexed
cache may exhibit a higher miss rate only if the cache organization is such that
the block offset plus the index bits exceed the page offset. We have seen above
that in such situations the tag of the virtually indexed cache has to be extended
to match the physical page frame number. As a result, the number of different
cache blocks that can map to a cache index is larger in a virtually indexed
cache. This increases the chance of conflict misses.
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