
Objectives_template

file:///E|/parallel_com_arch/lecture11/11_1.htm[6/13/2012 11:18:57 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 11: "Design Issues in Parallel Computers"

Fundamentals of Parallel Computers

Dataflow architecture

Systolic arrays

A generic architecture

Design issues

Naming

Operations

Ordering

Replication

Communication cost

ILP vs. TLP

[From Chapter 1 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture10/10_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture11/11_2.htm[6/13/2012 11:18:57 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 11: "Design Issues in Parallel Computers"

Dataflow architecture

Express the program as a dataflow graph
Logical processor at each node is activated when both operands are available

Mapping of logical nodes to PEs is specified by the program
On finishing an operation, a message or token is sent to the destination processor
Arriving tokens are matched against a token store and a match triggers the operation

Systolic arrays

Replace the pipeline within a sequential processor by an array of PEs

Each PE may have small instruction and data memory and may carry out a different operation
Data proceeds through the array at regular “heartbeats” (hence the name)
The dataflow may be multi-directional or optimized for specific algorithms

Optimize the interconnect for specific application (not necessarily a linear topology)
Practical implementation in iWARP

Uses general purpose processors as PEs
Dedicated channels between PEs for direct register to register communication

A generic architecture

In all the architectures we have discussed thus far a node essentially contains processor(s) +
caches, memory and a communication assist (CA)

CA = network interface (NI) + communication controller
The nodes are connected over a scalable network
The main difference remains in the architecture of the CA

And even under a particular programming model (e.g., shared memory) there is a lot of
choices in the design of the CA
Most innovations in parallel architecture take place in the communication assist (also
called communication controller or node controller)

Objectives_template

file:///E|/parallel_com_arch/lecture11/11_2.htm[6/13/2012 11:18:57 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture11/11_3.htm[6/13/2012 11:18:57 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 11: "Design Issues in Parallel Computers"

Design issues

Need to understand architectural components that affect software
Compiler, library, program
User/system interface and hw/sw interface
How programming models efficiently talk to the communication architecture?
How to implement efficient primitives in the communication layer?
In a nutshell, what issues of a parallel machine will affect the performance of the
parallel applications?

Naming, Operations, Ordering, Replication, Communication cost

Naming

How are the data in a program referenced?
In sequential programs a thread can access any variable in its virtual address space
In shared memory programs a thread can access any private or shared variable (same
load/store model of sequential programs)
In message passing programs a thread can access local data directly

Clearly, naming requires some support from hw and OS
Need to make sure that the accessed virtual address gets translated to the correct
physical address

Operations

What operations are supported to access data?
For sequential and shared memory models load/store are sufficient
For message passing models send/receive are needed to access remote data
For shared memory, hw (essentially the CA) needs to make sure that a load/store
operation gets correctly translated to a message if the address is remote
For message passing, CA or the message layer needs to copy data from local memory
and initiate send, or copy data from receive buffer to user area in local memory

Ordering

How are the accesses to the same data ordered?
For sequential model, it is the program order: true dependence order
For shared memory, within a thread it is the program order, across threads some “valid
interleaving” of accesses as expected by the programmer and enforced by
synchronization operations (locks, point-to-point synchronization through flags, global
synchronization through barriers)
Ordering issues are very subtle and important in shared memory model (some
microprocessor re-ordering tricks may easily violate correctness when used in shared
memory context)
For message passing, ordering across threads is implied through point-to-point
send/receive pairs (producer-consumer relationship) and mutual exclusion is inherent
(no shared variable)

Objectives_template

file:///E|/parallel_com_arch/lecture11/11_4.htm[6/13/2012 11:18:58 AM]

 Module 6: "Fundamentals of Parallel Computers"
 Lecture 11: "Design Issues in Parallel Computers"

Replication

How is the shared data locally replicated?
This is very important for reducing communication traffic
In microprocessors data is replicated in the cache to reduce memory accesses
In message passing, replication is explicit in the program and happens through receive
(a private copy is created)
In shared memory a load brings in the data to the cache hierarchy so that subsequent
accesses can be fast; this is totally hidden from the program and therefore the
hardware must provide a layer that keeps track of the most recent copies of the data
(this layer is central to the performance of shared memory multiprocessors and is
called the cache coherence protocol)

Communication cost

Three major components of the communication architecture that affect performance
Latency: time to do an operation (e.g., load/store or send/recv.)
Bandwidth: rate of performing an operation
Overhead or occupancy: how long is the communication layer occupied doing an
operation

Latency
Already a big problem for microprocessors
Even bigger problem for multiprocessors due to remote operations
Must optimize application or hardware to hide or lower latency (algorithmic
optimizations or prefetching or overlapping computation with communication)

Bandwidth
How many ops in unit time e.g. how many bytes transferred per second
Local BW is provided by heavily banked memory or faster and wider system bus
Communication BW has two components: 1. node-to-network BW (also called network
link BW) measures how fast bytes can be pushed into the router from the CA, 2.
within-network bandwidth: affected by scalability of the network and architecture of the
switch or router

Linear cost model: Transfer time = T0 + n/B where T0 is start-up overhead, n is number of

bytes transferred and B is BW
Not sufficient since overlap of comp. and comm. is not considered; also does not count
how the transfer is done (pipelined or not)

Better model:
Communication time for n bytes = Overhead + CA occupancy + Network latency +
Size/BW + Contention
T(n) = OV + OC + L + n/B + TC

Overhead and occupancy may be functions of n
Contention depends on the queuing delay at various components along the
communication path e.g. waiting time at the communication assist or controller, waiting
time at the router etc.
Overall communication cost = frequency of communication x (communication time –
overlap with useful computation)
Frequency of communication depends on various factors such as how the program is

Objectives_template

file:///E|/parallel_com_arch/lecture11/11_4.htm[6/13/2012 11:18:58 AM]

written or the granularity of communication supported by the underlying hardware

ILP vs. TLP

Microprocessors enhance performance of a sequential program by extracting parallelism from
an instruction stream (called instruction-level parallelism)
Multiprocessors enhance performance of an explicitly parallel program by running multiple
threads in parallel (called thread-level parallelism)
TLP provides parallelism at a much larger granularity compared to ILP
In multiprocessors ILP and TLP work together

Within a thread ILP provides performance boost
Across threads TLP provides speedup over a sequential version of the parallel program

file:///E|/parallel_com_arch/lecture12/12_1.htm

	11_1
	Local Disk
	Objectives_template

	11_2
	Local Disk
	Objectives_template

	11_3
	Local Disk
	Objectives_template

	11_4
	Local Disk
	Objectives_template

