Objectives_template

Module 7: "Parallel Programming"
Lecture 12: "Steps in Writing a Parallel Program”

Parallel Programming

Prolog: Why bother?
Agenda

Ocean current simulation
Galaxy simulation

Ray tracing

Writing a parallel program
Some definitions
Decomposition of Iterative Equation Solver
Static assignment
Dynamic assignment
Decomposition types
Orchestration

Mapping

An example

Sequential program

[From Chapter 2 of Culler, Singh, Gupta]

4|l Previous

Next |[p

file:/I/E|/parallel_com_arch/lecture12/12_1.htm[6/13/2012 11:19:58 AM]

file:///E|/parallel_com_arch/lecture11/11_4.htm

Objectives_template

Module 7: "Parallel Programming"
Lecture 12: "Steps in Writing a Parallel Program"

Prolog: Why bother?

= As an architect why should you be concerned with parallel programming?

e Understanding program behavior is very important in developing high-performance
computers

e An architect designs machines that will be used by the software programmers: so need
to understand the needs of a program

e Helps in making design trade-offs and cost/performance analysis i.e. what hardware
feature is worth supporting and what is not

e Normally an architect needs to have a fairly good knowledge in compilers and
operating systems

Agenda

= Parallel application case studies
= Steps in writing a parallel program
= Example

Ocean current simulation

= Regular structure, scientific computing, important for weather forecast
= Want to simulate the eddy current along the walls of ocean basin over a period of time
o Discretize the 3-D basin into 2-D horizontal grids
e Discretize each 2-D grid into points
e One time step involves solving the equation of motion for each grid point
e Enough concurrency within and across grids
o After each time step synchronize the processors

Galaxy simulation

= Simulate the interaction of many stars evolving over time
= Want to compute force between every pair of stars for each time step

o Essentially O(n2) computations (massive parallelism)
= Hierarchical methods take advantage of square law
o If a group of stars is far enough it is possible to approximate the group entirely by a
single star at the center of mass
o Essentially four subparts in each step: divide the galaxy into zones until further division
does not improve accuracy, compute center of mass for each zone, compute force,
update star position based on force
= Lot of concurrency across stars

4|l Previous Next||p

file:/l/E|/parallel_com_arch/lecturel2/12_2.htm[6/13/2012 11:19:59 AM]

Objectives_template

Module 7: "Parallel Programming"
Lecture 12: "Steps in Writing a Parallel Program"

Ray tracing

= Want to render a scene using ray tracing
= Generate rays through pixels in the image plane
= The rays bounce from objects following reflection/refraction laws
« New rays get generated: tree of rays from a root ray
= Need to correctly simulate paths of all rays
= The outcome is color and opacity of the objects in the scene: thus you render a scene
» Concurrency across ray trees and subtrees

Writing a parallel program

= Start from a sequential description
= Identify work that can be done in parallel
= Partition work and/or data among threads or processes
« Decomposition and assignment
= Add necessary communication and synchronization
e Orchestration
= Map threads to processors (Mapping)
= How good is the parallel program?
e Measure speedup = sequential execution time/parallel execution time = number of
processors ideally

Some definitions

= Task
o Arbitrary piece of sequential work
e Concurrency is only across tasks
e Fine-grained task vs. coarse-grained task: controls granularity of parallelism
(spectrum of grain: one instruction to the whole sequential program)
= Process/thread
e Logical entity that performs a task
e Communication and synchronization happen between threads
= Processors
¢ Physical entity on which one or more processes execute

Decomposition of Iterative Equation Solver

= Find concurrent tasks and divide the program into tasks
« Level or grain of concurrency needs to be decided here
e Too many tasks: may lead to too much of overhead communicating and
synchronizing between tasks
e Too few tasks: may lead to idle processors
e Goal: Just enough tasks to keep the processors busy
= Number of tasks may vary dynamically
« New tasks may get created as the computation proceeds: new rays in ray tracing
« Number of available tasks at any point in time is an upper bound on the achievable
speedup

file:/l/E|/parallel_com_arch/lecturel2/12_3.htm[6/13/2012 11:19:59 AM]

Objectives_template

4|l Previous

Next |[p

file:/l/E|/parallel_com_arch/lecturel2/12_3.htm[6/13/2012 11:19:59 AM]

Objectives_template

Module 7: "Parallel Programming"
Lecture 12: "Steps in Writing a Parallel Program"

Static assignment

= Given a decomposition it is possible to assign tasks statically
e For example, some computation on an array of size N can be decomposed statically by
assigning a range of indices to each process: for k processes Pg operates on indices 0
to (N/k)-1, P4 operates on N/k to (2N/k)-1,..., Px_1 operates on (k-1)N/k to N-1
e For regular computations this works great: simple and low-overhead
= What if the nature computation depends on the index?
e For certain index ranges you do some heavy-weight computation while for others you
do something simple
e Is there a problem?

Dynamic assignment

= Static assignment may lead to load imbalance depending on how irregular the application is
= Dynamic decomposition/assignment solves this issue by allowing a process to dynamically
choose any available task whenever it is done with its previous task
e Normally in this case you decompose the program in such a way that the number of
available tasks is larger than the number of processes
e« Same example: divide the array into portions each with 10 indices; so you have N/10
tasks
« Anidle process grabs the next available task
e Provides better load balance since longer tasks can execute concurrently with the
smaller ones
= Dynamic assignment comes with its own overhead
« Now you need to maintain a shared count of the number of available tasks
e The update of this variable must be protected by a lock
e Need to be careful so that this lock contention does not outweigh the benefits of
dynamic decomposition
= More complicated applications where a task may not just operate on an index range, but
could manipulate a subtree or a complex data structure
« Normally a dynamic task queue is maintained where each task is probably a pointer to
the data
e The task queue gets populated as new tasks are discovered

Decomposition types

= Decomposition by data
e The most commonly found decomposition technique
e« The data set is partitioned into several subsets and each subset is assigned to a
process
« The type of computation may or may not be identical on each subset
« Very easy to program and manage
= Computational decomposition
e Not so popular: tricky to program and manage
e All processes operate on the same data, but probably carry out different kinds of
computation
« More common in systolic arrays, pipelined graphics processor units (GPUSs) etc.

file:/l/E|/parallel_com_arch/lecturel2/12_4.htm[6/13/2012 11:19:59 AM]

Objectives_template

Orchestration

= |nvolves structuring communication and synchronization among processes, organizing data
structures to improve locality, and scheduling tasks

e This step normally depends on the programming model and the underlying architecture
= Goal is to

e Reduce communication and synchronization costs

e Maximize locality of data reference

« Schedule tasks to maximize concurrency: do not schedule dependent tasks in parallel

e Reduce overhead of parallelization and concurrency management (e.g., management of

the task queue, overhead of initiating a task etc.)

4|l Previous Next||p

file:/l/E|/parallel_com_arch/lecturel2/12_4.htm[6/13/2012 11:19:59 AM]

Objectives_template

Module 7: "Parallel Programming"
Lecture 12: "Steps in Writing a Parallel Program"

Mapping

= At this point you have a parallel program
e Just need to decide which and how many processes go to each processor of the parallel
machine
= Could be specified by the program
¢ Pin particular processes to a particular processor for the whole life of the program; the
processes cannot migrate to other processors
= Could be controlled entirely by the OS
¢ Schedule processes on idle processors
e Various scheduling algorithms are possible e.g., round robin: process#k goes to
processor#k
« NUMA-aware OS normally takes into account multiprocessor-specific metrics in scheduling
= How many processes per processor? Most common is one-to-one

An example

= lterative equation solver

e Main kernel in Ocean simulation

o Update each 2-D grid point via Gauss-Seidel iterations

o Ali,j] = 0.2(A[i,jlI+A[i,j+1]+A[i,j-1]+Afi+1,j]+A[i- 1,j])

« Pad the n by n grid to (n+2) by (n+2) to avoid corner problems

« Update only interior n by n grid

« One iteration consists of updating all n2 points in-place and accumulating the difference
from the previous value at each point

o If the difference is less than a threshold, the solver is said to have converged to a stable
grid equilibrium

Sequential program

int n; begin Solve (A)
float **A, diff; inti, j, done = 0;
float temp;

begin main() while ('done)

read (n); /* size of grid */ dif_f = 0.0;

Allocate (A); fori=0ton-1

Initialize (A); forj=0ton-1

Solve (A); temp=Af[i,j; N .
end main Alij] = 0.2(A[ij]+A[i j+1]+A[i j-1]+A[i-

1j]+A[i+1,j]);
diff += fabs (A[i,j] - temp);
endfor
endfor
if (diff/(n*n) < TOL) then done = 1;
endwhile
end Solve

4|l Previous Next||p

file:/l/E|/parallel_com_arch/lecturel2/12_5.htm[6/13/2012 11:20:00 AM]

file:///E|/parallel_com_arch/lecture13/13_1.htm

Objectives_template

file:/l/E|/parallel_com_arch/lecturel2/12_5.htm[6/13/2012 11:20:00 AM]

	12_1
	Local Disk
	Objectives_template

	12_2
	Local Disk
	Objectives_template

	12_3
	Local Disk
	Objectives_template

	12_4
	Local Disk
	Objectives_template

	12_5
	Local Disk
	Objectives_template

