
Objectives_template

file:///E|/parallel_com_arch/lecture12/12_1.htm[6/13/2012 11:19:58 AM]

 Module 7: "Parallel Programming"
 Lecture 12: "Steps in Writing a Parallel Program"

Parallel Programming

Prolog: Why bother?

Agenda

Ocean current simulation

Galaxy simulation

Ray tracing

Writing a parallel program

Some definitions

Decomposition of Iterative Equation Solver

Static assignment

Dynamic assignment

Decomposition types

Orchestration

Mapping

An example

Sequential program

[From Chapter 2 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture11/11_4.htm

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_2.htm[6/13/2012 11:19:59 AM]

 Module 7: "Parallel Programming"
 Lecture 12: "Steps in Writing a Parallel Program"

Prolog: Why bother?

As an architect why should you be concerned with parallel programming?
Understanding program behavior is very important in developing high-performance
computers
An architect designs machines that will be used by the software programmers: so need
to understand the needs of a program
Helps in making design trade-offs and cost/performance analysis i.e. what hardware
feature is worth supporting and what is not
Normally an architect needs to have a fairly good knowledge in compilers and
operating systems

Agenda

Parallel application case studies
Steps in writing a parallel program
Example

Ocean current simulation

Regular structure, scientific computing, important for weather forecast
Want to simulate the eddy current along the walls of ocean basin over a period of time

Discretize the 3-D basin into 2-D horizontal grids
Discretize each 2-D grid into points
One time step involves solving the equation of motion for each grid point
Enough concurrency within and across grids
After each time step synchronize the processors

Galaxy simulation

Simulate the interaction of many stars evolving over time
Want to compute force between every pair of stars for each time step

Essentially O(n2) computations (massive parallelism)
Hierarchical methods take advantage of square law

If a group of stars is far enough it is possible to approximate the group entirely by a
single star at the center of mass
Essentially four subparts in each step: divide the galaxy into zones until further division
does not improve accuracy, compute center of mass for each zone, compute force,
update star position based on force

Lot of concurrency across stars

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_3.htm[6/13/2012 11:19:59 AM]

 Module 7: "Parallel Programming"
 Lecture 12: "Steps in Writing a Parallel Program"

Ray tracing

Want to render a scene using ray tracing
Generate rays through pixels in the image plane
The rays bounce from objects following reflection/refraction laws

New rays get generated: tree of rays from a root ray
Need to correctly simulate paths of all rays
The outcome is color and opacity of the objects in the scene: thus you render a scene
Concurrency across ray trees and subtrees

Writing a parallel program

Start from a sequential description
Identify work that can be done in parallel
Partition work and/or data among threads or processes

Decomposition and assignment
Add necessary communication and synchronization

Orchestration
Map threads to processors (Mapping)
How good is the parallel program?

Measure speedup = sequential execution time/parallel execution time = number of
processors ideally

Some definitions

Task
Arbitrary piece of sequential work
Concurrency is only across tasks
Fine-grained task vs. coarse-grained task: controls granularity of parallelism
(spectrum of grain: one instruction to the whole sequential program)

Process/thread
Logical entity that performs a task
Communication and synchronization happen between threads

Processors
Physical entity on which one or more processes execute

Decomposition of Iterative Equation Solver

Find concurrent tasks and divide the program into tasks
Level or grain of concurrency needs to be decided here
Too many tasks: may lead to too much of overhead communicating and
synchronizing between tasks
Too few tasks: may lead to idle processors
Goal: Just enough tasks to keep the processors busy

Number of tasks may vary dynamically
New tasks may get created as the computation proceeds: new rays in ray tracing
Number of available tasks at any point in time is an upper bound on the achievable
speedup

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_3.htm[6/13/2012 11:19:59 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_4.htm[6/13/2012 11:19:59 AM]

 Module 7: "Parallel Programming"
 Lecture 12: "Steps in Writing a Parallel Program"

Static assignment

Given a decomposition it is possible to assign tasks statically
For example, some computation on an array of size N can be decomposed statically by
assigning a range of indices to each process: for k processes P0 operates on indices 0

to (N/k)-1, P1 operates on N/k to (2N/k)-1,…, Pk-1 operates on (k-1)N/k to N-1

For regular computations this works great: simple and low-overhead
What if the nature computation depends on the index?

For certain index ranges you do some heavy-weight computation while for others you
do something simple
Is there a problem?

Dynamic assignment

Static assignment may lead to load imbalance depending on how irregular the application is
Dynamic decomposition/assignment solves this issue by allowing a process to dynamically
choose any available task whenever it is done with its previous task

Normally in this case you decompose the program in such a way that the number of
available tasks is larger than the number of processes
Same example: divide the array into portions each with 10 indices; so you have N/10
tasks
An idle process grabs the next available task
Provides better load balance since longer tasks can execute concurrently with the
smaller ones

Dynamic assignment comes with its own overhead
Now you need to maintain a shared count of the number of available tasks
The update of this variable must be protected by a lock
Need to be careful so that this lock contention does not outweigh the benefits of
dynamic decomposition

More complicated applications where a task may not just operate on an index range, but
could manipulate a subtree or a complex data structure

Normally a dynamic task queue is maintained where each task is probably a pointer to
the data
The task queue gets populated as new tasks are discovered

Decomposition types

Decomposition by data
The most commonly found decomposition technique
The data set is partitioned into several subsets and each subset is assigned to a
process
The type of computation may or may not be identical on each subset
Very easy to program and manage

Computational decomposition
Not so popular: tricky to program and manage
All processes operate on the same data, but probably carry out different kinds of
computation
More common in systolic arrays, pipelined graphics processor units (GPUs) etc.

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_4.htm[6/13/2012 11:19:59 AM]

Orchestration

Involves structuring communication and synchronization among processes, organizing data
structures to improve locality, and scheduling tasks

This step normally depends on the programming model and the underlying architecture
Goal is to

Reduce communication and synchronization costs
Maximize locality of data reference
Schedule tasks to maximize concurrency: do not schedule dependent tasks in parallel
Reduce overhead of parallelization and concurrency management (e.g., management of
the task queue, overhead of initiating a task etc.)

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_5.htm[6/13/2012 11:20:00 AM]

 Module 7: "Parallel Programming"
 Lecture 12: "Steps in Writing a Parallel Program"

Mapping

At this point you have a parallel program
Just need to decide which and how many processes go to each processor of the parallel
machine

Could be specified by the program
Pin particular processes to a particular processor for the whole life of the program; the
processes cannot migrate to other processors

Could be controlled entirely by the OS
Schedule processes on idle processors
Various scheduling algorithms are possible e.g., round robin: process#k goes to
processor#k
NUMA-aware OS normally takes into account multiprocessor-specific metrics in scheduling

How many processes per processor? Most common is one-to-one

An example

Iterative equation solver
Main kernel in Ocean simulation
Update each 2-D grid point via Gauss-Seidel iterations
A[i,j] = 0.2(A[i,j]+A[i,j+1]+A[i,j-1]+A[i+1,j]+A[i-1,j])
Pad the n by n grid to (n+2) by (n+2) to avoid corner problems
Update only interior n by n grid
One iteration consists of updating all n2 points in-place and accumulating the difference
from the previous value at each point
If the difference is less than a threshold, the solver is said to have converged to a stable
grid equilibrium

Sequential program

int n;
float **A, diff;

begin main()
 read (n); /* size of grid */
 Allocate (A);
 Initialize (A);
 Solve (A);
end main

 begin Solve (A)
 int i, j, done = 0;
 float temp;
 while (!done)
 diff = 0.0;
 for i = 0 to n-1
 for j = 0 to n-1
 temp = A[i,j];
 A[i,j] = 0.2(A[i,j]+A[i,j+1]+A[i,j-1]+A[i-
1,j]+A[i+1,j]);
 diff += fabs (A[i,j] - temp);
 endfor
 endfor
 if (diff/(n*n) < TOL) then done = 1;
 endwhile
 end Solve

file:///E|/parallel_com_arch/lecture13/13_1.htm

Objectives_template

file:///E|/parallel_com_arch/lecture12/12_5.htm[6/13/2012 11:20:00 AM]

	12_1
	Local Disk
	Objectives_template

	12_2
	Local Disk
	Objectives_template

	12_3
	Local Disk
	Objectives_template

	12_4
	Local Disk
	Objectives_template

	12_5
	Local Disk
	Objectives_template

