
Objectives_template

file:///E|/parallel_com_arch/lecture13/13_1.htm[6/13/2012 11:25:47 AM]

 Module 7: "Parallel Programming"
 Lecture 13: "Parallelizing a Sequential Program"

Parallel Programming

Decomposition of Iterative Equation Solver

Assignment

Shared memory version

Mutual exclusion

LOCK optimization

More synchronization

Message passing

Major changes

Message passing

Message Passing Grid Solver

MPI-like environment

[From Chapter 2 of Culler, Singh, Gupta]

file:///E|/parallel_com_arch/lecture12/12_5.htm

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_2.htm[6/13/2012 11:25:47 AM]

 Module 7: "Parallel Programming"
 Lecture 13: "Parallelizing a Sequential Program"

Decomposition of Iterative Equation Solver

Look for concurrency in loop iterations
In this case iterations are really dependent
Iteration (i, j) depends on iterations (i, j-1) and (i-1, j)

Each anti-diagonal can be computed in parallel
Must synchronize after each anti-diagonal (or pt-to-pt)
Alternative: red-black ordering (different update pattern)

Can update all red points first, synchronize globally with a barrier and then update all black points
May converge faster or slower compared to sequential program
Converged equilibrium may also be different if there are multiple solutions
Ocean simulation uses this decomposition

We will ignore the loop-carried dependence and go ahead with a straight-forward loop decomposition
Allow updates to all points in parallel
This is yet another different update order and may affect convergence
Update to a point may or may not see the new updates to the nearest neighbors (this parallel
algorithm is non-deterministic)

while (!done)
 diff = 0.0;
 for_all i = 0 to n-1
 for_all j = 0 to n-1
 temp = A[i, j];
 A[i, j] = 0.2(A[i, j]+A[i, j+1]+A[i, j-1]+A[i-1, j]+A[i+1, j]);
 diff += fabs (A[i, j] – temp);
 end for_all
 end for_all
 if (diff/(n*n) < TOL) then done = 1;
end while

Offers concurrency across elements: degree of concurrency is n2

Make the j loop sequential to have row-wise decomposition: degree n concurrency

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_2.htm[6/13/2012 11:25:47 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_3.htm[6/13/2012 11:25:47 AM]

 Module 7: "Parallel Programming"
 Lecture 13: "Parallelizing a Sequential Program"

Assignment

Possible static assignment: block row decomposition
Process 0 gets rows 0 to (n/p)-1, process 1 gets rows n/p to (2n/p)-1 etc.

Another static assignment: cyclic row decomposition
Process 0 gets rows 0, p, 2p,…; process 1 gets rows 1, p+1, 2p+1,….

Dynamic assignment
Grab next available row, work on that, grab a new row,…

Static block row assignment minimizes nearest neighbor communication by assigning
contiguous rows to the same process

Shared memory version

/* include files */
MAIN_ENV;
int P, n;
void Solve ();
struct gm_t {
 LOCKDEC (diff_lock);
 BARDEC (barrier);
 float **A, diff;
} *gm;
int main (char **argv, int argc)
{
 int i;
 MAIN_INITENV;
 gm = (struct gm_t*) G_MALLOC (sizeof (struct gm_t));
 LOCKINIT (gm->diff_lock);
BARINIT (gm->barrier);
 n = atoi (argv[1]);
 P = atoi (argv[2]);
 gm->A = (float**) G_MALLOC ((n+2)*sizeof (float*));
 for (i = 0; i < n+2; i++) {
 gm->A[i] = (float*) G_MALLOC ((n+2)*sizeof (float));
 }
 Initialize (gm->A);
 for (i = 1; i < P; i++) { /* starts at 1 */
 CREATE (Solve);
 }
 Solve ();
 WAIT_FOR_END (P-1);
 MAIN_END;
}

void Solve (void)
{
 int i, j, pid, done = 0;

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_3.htm[6/13/2012 11:25:47 AM]

 float temp, local_diff;
 GET_PID (pid);
 while (!done) {
 local_diff = 0.0;
 if (!pid) gm->diff = 0.0;
 BARRIER (gm->barrier, P);/*why?*/
 for (i = pid*(n/P); i < (pid+1)*(n/P); i++) {
 for (j = 0; j < n; j++) {
 temp = gm->A[i] [j];
 gm->A[i] [j] = 0.2*(gm->A[i] [j] + gm->A[i] [j-1] + gm->A[i] [j+1] + gm->A[i+1] [j] + gm->A[i-1]
[j]);
local_diff += fabs (gm->A[i] [j] – temp);
 } /* end for */
 } /* end for */
 LOCK (gm->diff_lock);
 gm->diff += local_diff;
 UNLOCK (gm->diff_lock);
 BARRIER (gm->barrier, P);
 if (gm->diff/(n*n) < TOL) done = 1;
 BARRIER (gm->barrier, P); /* why? */
 } /* end while */
}

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_4.htm[6/13/2012 11:25:48 AM]

 Module 7: "Parallel Programming"
 Lecture 13: "Parallelizing a Sequential Program"

Mutual exclusion

Use LOCK/UNLOCK around critical sections
Updates to shared variable diff must be sequential
Heavily contended locks may degrade performance
Try to minimize the use of critical sections: they are sequential anyway and will limit
speedup
This is the reason for using a local_diff instead of accessing gm->diff every time
Also, minimize the size of critical section because the longer you hold the lock, longer
will be the waiting time for other processors at lock acquire

LOCK optimization

Suppose each processor updates a shared variable holding a global cost value, only if its
local cost is less than the global cost: found frequently in minimization problems

LOCK (gm->cost_lock);
if (my_cost < gm->cost) {
gm->cost = my_cost;
}
UNLOCK (gm->cost_lock);
/* May lead to heavy lock contention if everyone tries to update at the same time */

if (my_cost < gm->cost) {
LOCK (gm->cost_lock);
if (my_cost < gm->cost)
{ /* make sure*/
gm->cost = my_cost;
}
UNLOCK (gm->cost_lock);
} /* this works because gm->cost is monotonically decreasing */

More synchronization

Global synchronization
Through barriers
Often used to separate computation phases

Point-to-point synchronization
A process directly notifies another about a certain event on which the latter was
waiting
Producer-consumer communication pattern
Semaphores are used for concurrent programming on uniprocessor through P and V
functions
Normally implemented through flags on shared memory multiprocessors (busy wait or
spin)

P0: A = 1; flag = 1;

P1: while (!flag); use (A);

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_4.htm[6/13/2012 11:25:48 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_5.htm[6/13/2012 11:25:48 AM]

 Module 7: "Parallel Programming"
 Lecture 13: "Parallelizing a Sequential Program"

Message passing

What is different from shared memory?
No shared variable: expose communication through send/receive
No lock or barrier primitive
Must implement synchronization through send/receive

Grid solver example
P0 allocates and initializes matrix A in its local memory

Then it sends the block rows, n, P to each processor i.e. P1 waits to receive rows n/P

to 2n/P-1 etc. (this is one-time)
Within the while loop the first thing that every processor does is to send its first and
last rows to the upper and the lower processors (corner cases need to be handled)
Then each processor waits to receive the neighboring two rows from the upper and the
lower processors

At the end of the loop each processor sends its local_diff to P0 and P0 sends back the done

flag

Major changes

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_5.htm[6/13/2012 11:25:48 AM]

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_6.htm[6/13/2012 11:25:48 AM]

 Module 7: "Parallel Programming"
 Lecture 13: "Parallelizing a Sequential Program"

Message passing

This algorithm is deterministic
May converge to a different solution compared to the shared memory version if there are
multiple solutions: why?

There is a fixed specific point in the program (at the beginning of each iteration) when
the neighboring rows are communicated
This is not true for shared memory

Message Passing Grid Solver

MPI-like environment

MPI stands for Message Passing Interface
A C library that provides a set of message passing primitives (e.g., send, receive,
broadcast etc.) to the user

PVM (Parallel Virtual Machine) is another well-known platform for message passing
programming
Background in MPI is not necessary for understanding this lecture
Only need to know

When you start an MPI program every thread runs the same main function
We will assume that we pin one thread to one processor just as we did in shared
memory

Instead of using the exact MPI syntax we will use some macros that call the MPI functions

MAIN_ENV;
/* define message tags */
 #define ROW 99
#define DIFF 98
#define DONE 97
int main(int argc, char **argv)
{
 int pid, P, done, i, j, N;
 float tempdiff, local_diff, temp, **A;
 MAIN_INITENV;
 GET_PID(pid);
 GET_NUMPROCS(P);
 N = atoi(argv[1]);
 tempdiff = 0.0;
 done = 0;
 A = (double **) malloc ((N/P+2) * sizeof(float *));
 for (i=0; i < N/P+2; i++) {
 A[i] = (float *) malloc (sizeof(float) * (N+2));
 }
 initialize(A);
while (!done) {
 local_diff = 0.0;
 /* MPI_CHAR means raw byte format */

Objectives_template

file:///E|/parallel_com_arch/lecture13/13_6.htm[6/13/2012 11:25:48 AM]

 if (pid) { /* send my first row up */
 SEND(&A[1][1], N*sizeof(float), MPI_CHAR, pid-1, ROW);
 }
 if (pid != P-1) { /* recv last row */
 RECV(&A[N/P+1][1], N*sizeof(float), MPI_CHAR, pid+1, ROW);
 }
 if (pid != P-1) { /* send last row down */
 SEND(&A[N/P][1], N*sizeof(float), MPI_CHAR, pid+1, ROW);
 }
 if (pid) { /* recv first row from above */
 RECV(&A[0][1], N*sizeof(float), MPI_CHAR, pid-1, ROW);
 }
 for (i=1; i <= N/P; i++) for (j=1; j <= N; j++) {
 temp = A[i][j];
 A[i][j] = 0.2 * (A[i][j] + A[i][j-1] + A[i-1][j] + A[i][j+1] + A[i+1][j]);
 local_diff += fabs(A[i][j] - temp);
 }
if (pid) { /* tell P0 my diff */
 SEND(&local_diff, sizeof(float), MPI_CHAR, 0, DIFF);
 RECV(&done, sizeof(int), MPI_CHAR, 0, DONE);
 }
 else { /* recv from all and add up */
 for (i=1; i < P; i++) {
 RECV(&tempdiff, sizeof(float), MPI_CHAR, MPI_ANY_SOURCE, DIFF);
 local_diff += tempdiff;
 }
 if (local_diff/(N*N) < TOL) done=1;
 for (i=1; i < P; i++) {
 /* tell all if done */
 SEND(&done, sizeof(int), MPI_CHAR, i, DONE);
 }
 }
} /* end while */
MAIN_END;
} /* end main */

Note the matching tags in SEND and RECV
Macros used in this program

GET_PID
GET_NUMPROCS
SEND
RECV

These will get expanded into specific MPI library calls
Syntax of SEND/RECV

Starting address, how many elements, type of each element (we have used byte only),
source/dest, message tag

file:///E|/parallel_com_arch/lecture14/14_1.htm

	13_1
	Local Disk
	Objectives_template

	13_2
	Local Disk
	Objectives_template

	13_3
	Local Disk
	Objectives_template

	13_4
	Local Disk
	Objectives_template

	13_5
	Local Disk
	Objectives_template

	13_6
	Local Disk
	Objectives_template

