Control Structures in C
Part - |

Module — 1

Dear friends,

In Today’s discussion we will cover an interesting, very useful and most
frequently used feature of C Programming named control structures. You all know
that a computer program contains a sequence of instructions and ensures that the

instructions are executed in the same order in which they appear in the program.

For Example consider a program segment to find the average of two numbers

int num1,num2,sum;
float avg;
sum=numl+num2;
avg=sum/2;

Now let us understand the difference between Statements and Blocks.
As you know, in C, the semicolon is a statement terminator. Expressions like count =
1 or ++i Or printf(...) becomes a statement when it is followed by a semicolon, as in

count=1;
++i:

printf(...);

But Blocks are used to group declarations and statements together into a com-
pound statement. Braces { and } are used for creating blocks and they are syntacti-
cally equivalent to a single statement. Any variable can be declared only at the begin-
ning of the block.

For example
{int a, b= 10;

a= b*b;

printf(“%d %d",b, a);
}

But in practice, it may be necessary to make the sequence of the execution flow to
be transferred from one part of the program to another part. This can be achieved
with the help of control (flow) structures or control constructs.

As the name suggests the ‘control instructions’ determine the ‘flow of control’ in a
program. The control-flow of a language specifies the order in which computations
are performed. C supports the control structures classified under two main categories
Conditional and Unconditional control structures.

Conditional control structures

In the case of conditional execution, the flow of execution may be transferred from
one part of the program to another part based on the output of the conditional test
carried out.

Under conditional construct we have two categories nhamed as selective construct
and loop construct.

Selective construct

In selective constructs, the statement is selected for execution based on the output of
the conditional test given by the expression. C supports 4 selective constructs

including

1. Conditional expression
2. if—else
3. switch-case

Loop construct

Sometimes the execution of certain statements need to be repeated until a given
condition is satisfied or it may have to be repeated for a known number of times.
Such repetitions are carried out by using a loop structure. The loop construct is also
known as iterative construct or a repetitive construct. C supports

1. for
2. while
and
3. do-while
loop constructs.

Unconditional control structures
If the flow of execution is transferred from one part of a program to another part
without carrying out any conditional test, it is known as an unconditional execution. C

supports break statement, continue Statement and goto unconditional control
structures.

Classification of Control Structures

(Control Structures)

I I
(Conditional) (Unconditional)

Selective Loop goto
break
continue
If
if-else .
switch-case while
— Conditional B for
expression do-while

Now let us go through various control structures one by one in the order of simplicity
with suitable examples.

Module — 2

If CONSTRUCT

There may be situations where we have to perform different sets of actions
depending on the circumstances. The if-else construct is used to select a specific
statement based on the specific condition. It is a powerful decision-making statement
and is used to control the flow of execution of statements. The general format is

if (test_expression)

True-block statements

}

it allows the computer to evaluate the expression first and then, depending on
whether the value of the expression (relation or condition) is ‘true’ (non zero) or ‘false’
(zero),it transfers the control to a particular statement. This point of program has two
paths to follow one for true condition and the other for false condition. You can see
the flow chart representation of the flow of control in if-statement in the screen

TRUE FALSE

h 4

Statement 1

l |
|

Flow of control in if-statement

As a general rule, we express a condition using C’s ‘relational’ operators. The
relational operators allow us to compare two values to see whether they are equal to
each other, unequal, or whether one is greater than the other. From the table, it can
be observed that how the expressions look and how they are evaluated in C.

Expression True if

X==y X is equal toy

xl=y X is not equal to y

X<y X is less than y

x>y X is greater than y

X<=y X is less than or equal to y
X>=y X is greater than or equal to y

Let me now show you a sample program to illustrate the use of if-else construct

#include <stdio.h>

main()
{
int mark ;
printf ("Enter the score ") ;
scanf ("%d", &score) ;
if (num >=50)
{

}

printf ("Congratulations ") ;

In this example, if you enter a score which is greater than or equal to 50 the
statements inside the printf will be displayed.

if-else Construct

We have seen that the if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to true. It does
nothing when the expression evaluates to false. Now a question for you, can we
execute one group of statements if the expression evaluates to true and another
group of statements if the expression evaluates to false? Yes this is what is the
purpose of the if-else statement.

The general form of if-else construct is :

if (test expression)

{

True-block statements
}
else
{

False-block statements
}

statement x;

If the test expression is true, then the true-block statements, immediately following
the if statement are executed; otherwise , the false block statements are executed.
Here either true block or false block will be executed, not both. This control flow is
illustrated in the flow chart representation as shown in the screen.

Entry

False True
Test expression??
False-block True-block
statement statement

Statement x

A 4
A

Flow of control in if-else statement

Now let us go through a simple program to find the biggest of two numbers which
clearly shows the use of if-else statement.

#include<stdio.h>

void main()

{
int x,y;
printf("Enter value for x :");
scanf("%d",&x);
printf("Enter value for y :");
scanf("%d",&y);

if(x>y)
{
printf(" The large number is %d\n", x);
}
else
{
printf("The large number is %d\n", y);
}

In this program, if x is the biggest one then statements inside if block is executed
otherwise the block of statements inside else part is executed.

It is obvious that, we cannot solve all problems related to decision making with a
simple if construct or if-else construct, for this we can expand this concept in the
different ways. We will discuss them one by one.

Nested if-else statements

When a series of decisions are involved, we may have to use more than one if-else
statement in the nested form. When an if-else construct appears as a statement in
another if-else, it is known as nested if-else construct. General form of if-else
construct is shown in the screen.

if(test condition a)

{
if(test condition b)
{
Statement 1;
}
else
{
Statement 2;
}
}
else
{
Statement 3;
}

Statement x;
Now let us understand the execution of this nested if-else structure:

If the condition a is false then the statement 3 will be executed; otherwise it
continues to perform the second test. If the condition b is true the statement 1 will
be executed; otherwise statement 2 will be evaluated and then the control is
transferred to the statement x.

To get more clarity let us now see the use of nested if-else construct as a flow chart
as shown in the screen.

Entry

y .
N

False // . - True
<_Test expression?? >

o y
o PR

. -

b

"N

False . True
<_Test expression?? >

o
_

Y v

Statement 3 Statement 2 Statement 1

I

»

(
-

Statement x

Flow chart for nested if-else statement

\
4

Now let me show you a quick demo of nested if-else statement with the help of a
simple program to find the largest of three numbers.

#include<stdio.h>

Main()

L
int X,y,z;
printf(“Enter three numbers :”);
scanf(*%d %d %d”, &x , &y , &2);

if(x>y)
{

if(x>z)

{

printf(“x is the largest number”);

printf (“z is the largest number”);

if(z>y)
{

printf(“z is the largest number”);
else

printf (*y is the largest number”);

Next we will see the else if ladder statement (OR if-else if construct) and its
usage.

This method is used when multipath decisions are involved in a problem. A multipath
decision is a chain of if statements in which the statements associated with each
else is an if. The general form is :

if(condition 1)
statement-1;
else if(condition 2)
statement-2;
else if(condition 3)
statement 3;
else if(condition 4)
statement 4;

else
default statement;

statement x;

In this case every else is associated with its previous if. The last else goes to
work only if all the conditions fail. Even in else if ladder the last else is optional. If
there is no else part with the respective if, the compiler associates the else part with
the closest inner if construct which doesn’t have an else part. Care must be taken to
use braces appropriately for association of else part with its if.

Note that the else if clause is nothing different. It is just a way of rearranging the else
with the if that follows it. This would be evident if you look at the code given in the
screen:

if(i==1)

printf ("red”) ; if(i==1)
else printf ("red") ;
{

if(j==2) else if(j==2)

printf ("apple") ; printf("apple");
}

To get more clarity let us now see the use of if-else ladder statement with the help of
flow chart as shown in the screen.

Entry
,/!\\
True " Test O\ i
~_expression? }
v Trug// T False
Statement 1 ~_expression? !
True False
v P cci
Statement 2 .expression? !
‘ True 4 _False
Test
Statement 3 .
~._expression? -
O
v b v
Statement n Default
statement
v v b 4 v
A y N Ve
¢ < | { <
. . 4 -y

Statement x

Flow chart for else-if ladder

Now let me show you a quick demo of else-if ladder statement with the help of a
simple C program to check the class obtained by the students from their mark
obtained from five subjects.

#include<stdio.h>

main()

{
int m1, m2, m3, m4, m5, per;
printf(“enter the mark of five papers”);
scanf(“%d%d%d%d%d”,&m1,&m2,&m3,&m4,&m5);
per=(ml+m2+m3+m4+m5)/5;

if (per>=60)
printf ("First class") ;
else if (per >=50)
printf ("Second class") ;
else if (per>=40)

printf ("Third class") ;
else
printf (“fail") ;
}

Module — 3
Switch-case construct

In the previous methods when the program needs more and more alternatives the
complexity of the program increases and also it is difficult to read and follow those
codes. To overcome this, C has a built in multi-way decision statement known as
switch-case construct. The switch statement testes the value of a given
expression against a list of case values and the block of statements associated with
the matching case value is executed. Three keywords switch, case, and default, go
together to make up the control statement.

The general format is:

switch (expression)

{

case 1:
Statements;
break;

case 2.
statements;
break;

case 3.
statements;
break;

default :
statements ;
break;

}

Each case is labeled by an integer or character expression yielding an integer value
known as case labels. The expression is evaluated first and its value is then matched
against the case labels. If a case matches the expression value, execution starts at
that case. All case expressions must be different. The case labeled default is exe-
cuted if none of the other cases are satisfied. A default is optional; if it isn't there and
if none of the cases match, no action at all takes place. Cases and the default clause
can occur in any order.

If a break is not included in each case statement, whenever a match is found, the
program executes the statements following the case and also all the subsequent
case statements and default statements. Even though a break statement is not
necessary in the default part, it is a good programming practice to add it always.

The colon (:) must be placed at the end of each case label and default. The braces
following the labels are optional.

Now we can see the use of switch-case construct with the help of a program
segment written to find the grade of students.

point =mark/total*10;
switch(point)

case 10:
case 9 :
case 8:

grade = "A+";

break;
case 7 :
case 6 :
grade = “A”,
break;
case 5:
grade = “B”,
break;
case 4 .
grade = “C”,
break;
default :
grade = “Fail”;
break;

}

Printf(“Grade is %s, grade”);

Now let us discuss another conditional control structure named conditional
expression.

Module — 4

Conditional expression

The conditional operators ? and : named ternary operator since they take three ar-
guments. In fact, they form a kind of foreshortened if-then-else. Their general form is,

expression 1 ? expression 2 : expression 3
What this expression says is: “if expression 1 is true (that is, if its value is non-zero),

then the value returned will be expression 2, otherwise the value returned will be
expression 3”.

That means a conditional expression will be evaluated as,

1. The expression 1 is evaluated to find the logical value true(non-zero) or false
(zero)

2. If the expression 1 is true, then the expression 2 is evaluated and that will be
the resulting value of the conditional expression.

3. If the expression 1 is false, then the expression 3 is evaluated and that will be
the resulting value of the conditional expression.

For more clarity let us see the flow chart representation

l

Expression 1

TRUE FALSE

A 4 Y

Expression 2 Expression 3

l =

For example the segment

if(x==1)
flag=1,;
else
flag=0;

can be written as
flag=(x==1)? 1:0;

also consider an example of finding largest of three numbers using conditional
operator :

big=(a>b?(a>c?1:3):(b>c?2:3));

Now we have covered conditional selective control structures including if-else
(nested if and if-else ladder), switch-case and Conditional expression. Let us now
move to Loop conditional control structures.

There are many more other features in C programming language are remaining to
explore. So let us wait for the coming sessions. Till then bye.

Summary

C is a structured programming language. A simple statement is terminated by a
semicolon and compound statements are written with the braces known as blocks. C
supports many control structures broadly classified under conditional execution and
unconditional execution.

Control instructions’ determine the ‘flow of control’ in a program. The control-flow of a
language specifies the order in which computations are performed. C supports the
control structures classified under two main categories Conditional and Unconditional
control structures. In the case of conditional execution, the flow of execution may be
transferred from one part of the program to another part based on the output of the
conditional test carried out. In selective constructs, the statement is selected for exe-
cution based on the output of the conditional test given by the expression. C supports
selective constructs such as Conditional expression , if — else , switch-case etc.

switch-case construct is a multi-way decision statement. It is used to transfer the
control to more than two alternatives.

Assignments

e Explain the classification of control structures in C.

e Explain in detail the different forms of if construct in C.

¢ |llustrate the use of ternary operator in C.

e Compare the switch-case structure with the if-else structure. Which is more
convenient? Give a suitable example.

e Write a program to check whether the entered year is leap year or not using
switch-case construct.

Reference

e B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Cliffs, New Jersey, 1978.
e Greg Perry, Absolute Beginners' guide to C 2" Edition, SAMS publishing, A

division of Prentice Hall Computer Publishing, 201 West 103rd Street ,
Indianapolis, Indiana 46290. April 1994.

e Yashavant Kanetkar; Let us C, BPB Publications, New Delhi.

