
Introduction to Storage Class

A storage class represents the visibility and a location of a variable. It tells from what
part of code we can access a variable. A storage class is used to describe the
following things:

 The variable scope.
 The location where the variable will be stored.
 The initialized value of a variable.
 A lifetime of a variable.
 Who can access a variable?

Thus a storage class is used to represent the information about a variable.

NOTE: A variable is not only associated with a data type, its value but also a storage
class.

There are total four types of standard storage classes. The table below represents
the storage classes in 'C'.

Storage class Purpose

auto It is a default storage class.

extern It is a global variable.

static It is a local variable which is capable of returning a value

even when control is transferred to the function call.

register It is a variable which is stored inside a Register.

 Auto storage class

The variables defined using auto storage class are called as local variables. Auto
stands for automatic storage class. A variable is in auto storage class by default if it
is not explicitly specified.

The scope of an auto variable is limited with the particular block only. Once the
control goes out of the block, the access is destroyed. This means only the block in
which the auto variable is declared can access it.

A keyword auto is used to define an auto storage class. By default, an auto variable
contains a garbage value.

Example: auto int age;

The program below defines a function with has two local variables

int add(void) {
 int a=13;
 auto int b=48;
return a+b;}

We take another program which shows the scope level "visibility level" for auto
variables in each block code which are independently to each other:

#include <stdio.h>
int main()
{
 auto int j = 1;
 {
 auto int j= 2;
 {
 auto int j = 3;
 printf (" %d ", j);
 }
 printf ("\t %d ",j);
 }
 printf("%d\n", j);}

OUTPUT:

 3 2 1

 Extern storage class

Extern stands for external storage class. Extern storage class is used when we have
global functions or variables which are shared between two or more files.

Keyword extern is used to declaring a global variable or function in another file to
provide the reference of variable or function which have been already defined in the
original file.

The variables defined using an extern keyword is called as global variables. These
variables are accessible throughout the program.

Notice that the extern variable cannot be initialized it has already been defined in the
original file

Example, extern void display();

First File: main.c
#include <stdio.h>
extern i;
main() {
 printf("value of the external integer is = %d\n", i);
 return 0;}

Second File: original.c

#include <stdio.h>
i=48;

Result:
value of the external integer is = 48

 Static storage class

The static variables are used within function/ file as local static variables. They can
also be used as a global variable

 Static local variable is a local variable that retains and stores its value
between function calls or block and remains visible only to the function or
block in which it is defined.

 Static global variables are global variables visible only to the file in which it
is declared.

Example: static int count = 10;

Keep in mind that static variable has a default initial value zero and is initialized only
once in its lifetime.

#include <stdio.h>
void next(void); /* function declaration */
static int counter = 7; /* global variable */
main() {
 while(counter<10) {
 next();
 counter++; }
return 0;}

void next(void) { /* function definition */
 static int iteration = 13; /* local static variable */
 iteration ++;
 printf("iteration=%d and counter= %d\n", iteration, counter);}

Result:

iteration=14 and counter= 7
iteration=15 and counter= 8
iteration=16 and counter= 9

Global variables are accessible throughout the file whereas static variables are
accessible only to the particular part of a code.

The lifespan of a static variable is in the entire program code. A variable which is
declared or initialized using static keyword always contains zero as a default value.

 Register storage class

You can use the register storage class when you want to store local variables within
functions or blocks in CPU registers instead of RAM to have quick access to these
variables. For example, "counters" are a good candidate to be stored in the register.

Example: register int age;

The keyword register is used to declare a register storage class. The variables
declared using register storage class has lifespan throughout the program.

It is similar to the auto storage class. The variable is limited to the particular block.
The only difference is that the variables declared using register storage class are
stored inside CPU registers instead of a memory. Register has faster access than
that of the main memory.

The variables declared using register storage class has no default value. These
variables are often declared at the beginning of a program.

#include <stdio.h> /* function declaration */

main() {

{register int weight;

int *ptr=&weight ;/*it produces an error when the compilation occurs ,we

cannot get a memory location when dealing with CPU register*/}

}

OUTPUT:

error: address of register variable 'weight' requested

 Comparison of all storage classes

The next table summarizes the principal features of each storage class which are

commonly used in C programming

Storage

Class

Declaration Storage Default Initial

Value

Scope Lifetime

auto Inside a

function/block
Memory Unpredictable Within the function/block

Within the

function/block

register Inside a

function/block

CPU

Registers
Garbage Within the function/block

Within the

function/block

extern
Outside all

functions
Memory Zero

Entire the file and other files

where the variable is declared

as extern

program runtime

Static

(local)

Inside a

function/block
Memory Zero Within the function/block program runtime

Static

(global)

Outside all

functions
Memory Zero Global program runtime

 Summary

In this tutorial we have discussed storage classes in C, to sum up:

 A storage class is used to represent additional information about a variable.
 Storage class represents the scope and lifespan of a variable.
 It also tells who can access a variable and from where?
 Auto, extern, register, static are the four storage classes in 'C'.
 auto is used for a local variable defined within a block or function
 Register is used to store the variable in CPU registers rather memory location

for quick access.
 Static is used for both global and local variables. Each one has its use case

within a C program.
 Extern is used for data sharing between C project files.

