

STRUCTURE AND UNION IN C

Module – 1

Dear friends,

In this session, we will discuss two very interesting and useful features of C pro-
gramming language named structure and union. So far we have been discussing
the primitive data types and some of the derived data types and using them in C
programs. In a larger program, sometimes it may be necessary to organize a
group of data items of different data types referring to a single entity. However we
cannot use an array if we want to represent a collection of data items of different
types using a single name. A structure helps to define such a data types in C.
Each data item is a member or field of the structure.

Structures are slightly different from the variable types you have been using till

now. Structures are data types by themselves. When you define a structure or

union, you are creating a custom data type. For example, A passenger who wants

to reserve a railway ticket has to furnish the details like, Name, Sex, Age, train

number, Boarding place, Destination, date of journey. It will be convenient to han-

dle all these details of a passenger as a single entity in a program. This informa-

tion may be maintained for every passenger for further processing. Arrays can

hold only data of similar data types and hence they cannot hold information hav-

ing different data types. The need for structure arises in such situations.

Structure Declaration

A structure is a collection of one or more variables, possibly of different types,
grouped together under a single name for convenient handling. Structures help to
organize complicated data, particularly in large programs, because they permit a
group of related variables to be treated as a unit instead of separate entities.
Structures have declarations and definitions. The general format of a structure
declaration is,

struct tag
{

Declaration of member 1;
Declaration of member 2;

Declaration of member n;

};

1

The declaration begins with the keyword struct. The list of declarations of its
members must be enclosed in braces. The tag is a name that identifies structures
of this type. The individual members can be ordinary variables, pointers, arrays or
other structures. The member names within a particular structure must be distinct
from one another, though a member name can be same as the name of a variable
defined outside the structure.
For example, suppose we want to store data about a passenger, which consist of
passenger name (a string), age(an integer), train number(an integer), boarding
place(a string) and destination (a string) so on. Let us see the structure declara-
tion now.

struct passenger
{

char name [20];
int age;
int train_no;
char board_place[20];
char destn[20];

};

This declaration uses passenger as a tag. Observe the semicolon after the clos-
ing brace. There are five members in this structure declaration. Tag name may be
used as an ordinary variable name or a member variable name without any con-
flict in a program. After the declaration of a structure, a structure variable can be
created by defining it as

struct tag var1, var2,…., varn;

 for example struct passenger pas1, pas2; /* Structure variable definition */

defines two structures variables pas1 and pas2 of strcut data type. The structure
definition reserves spaces for the structure variables. The members are stored in
memory in the order they are declared in the structure declaration. There are dif -
ferent ways to define structure variables.

1. struct tag
{
Member declarations; /* structure declaration */
};

Struct tag var1, var2, …., varn; /* structure definition */

2. struct tag
{
Member declarations; /* structure declaration */
};

typedef struct tag NEWNAME; /* renaming the structure */
NEWNAME var1, var2,…..,varn; /* structure definition */

2

3. typedef struct tag /* structure declaration with renaming */
{
Member declarations;
} NEWNAME;

NEWNAME var1, var2,…..,varn; /* structure definition */

4. typedef struct /* structure declaration with renaming */
{
Member declarations;
} NEWNAME;

NEWNAME var1, var2,…..,varn; /* structure definition */

5. struct tag
{
Member declarations; /* structure declaration */
} var1, var2,….., varn; /* structure definition */

6. struct
{
Member declarations;
}var1, var2, …., varn; /* structure definition */

Observe the declarations and definitions carefully. There should be at least one
blank space after the closing brace in the third and fourth methods.

It is very important to remember that

 Only after the definition, the structure variables are created and storage
space are reserved.

 The structure declaration should be terminated with a semicolon.

Initializing structure elements

A structure element can be initialized in its definition itself with a list of initializes
enclosed within the braces. Each initializer must be a constant expression and the
order and type of each member must match the order and type of its declaration.
For example:

struct student
{

char name [20];
int rollno;
float fees;
char division;

3

} ;
struct student s1 = {“arun”, 11, 3200, ‘A’};
struct student s2 = {“ram”, 27, 4000, ‘C};

A structure variable may be initilaised by means of assigning another structure
variable of similar type. For example,

Struct student s1=s2;

Assigns the data of s1 to s2. But the structure variable at the right side of the
assignment statement has to be defined and initialized or read before the
assignment.

 The initialization method shown is the screen is also a valid one.
struct student
{

char name [20];
int rollno;
float fees;
char division;

} s1 = {“arun”, 11, 3200, ‘A’};

Here the declaration and definition are combined. While declaring a structure, it is
very important to remember that the member variables can not be initialized. This
is because a structure declaration does not reserve nay memory space.

Accessing Structure Elements

Having declared the structure type and the structure variables, let us see how the
elements of the structure can be accessed. In arrays we can access individual
elements of an array using a subscript. Structures use a different scheme. They
use a dot (.) operator. So to refer to name of the structure defined in our sample
program we have to use,

s1.name

Similarly, to refer to rollno we would use,

s1.rollno

Please note that before the dot there must always be a structure variable and
after the dot there must always be a structure element.

The corresponding C statements will be;

strcpy(s1.name, “Ravi”);

s1.roll_no = 13;
……….

How Structure Elements are Stored

Whatever be the elements of a structure, they are always stored in contiguous
memory locations. Let me now illustrate the concept using a simple program.

4

/* Memory map of structure elements */

#include<stdio.h>
main()
{

struct book
{

char name[20] ;
float price ;
int pages ;

} ;
struct book b1 = { “book1”, 75.00, 225 } ;
printf ("\nAddress of name = %u", &b1.name) ;
printf ("\nAddress of price = %u", &b1.price) ;
printf ("\nAddress of pages = %u", &b1.pages) ;
}

Here is the output of the program...

Address of name = 64318
Address of price = 64339
Address of pages = 64344

The memory map for the structure declared in the program will be as shown in the
screen.

 b1.name b1.price b1.pages

book1 75.00 225

 64318 64339 64344

Copying and comparing structure variable

We have already discussed that two variables of same structure type can be
copied the same way as ordinary variables. If student1 and student2 belong to the
same structure, then the following statements are valid:

student1 = student2;

student2 = student1;

However, the statements such as

student1 == student2
student1 != student2

5

are not permitted. C does not permit any logical operations of structure variables.
In case we need to compare them, we may do so by comparing members individ-
ually.

Nested Structure

If a structure contains one or more structures as its members, it is known as
nested structure. Let us consider an example that declares a nested structure to
store bate of birth of a student.

We can declare a structure to store date as

struct date
{

int dd;
int mm;
int yy;

};

This structure date can be used as a member in another structure as shown in the
screen.

struct student
{

char name[20];
int rollno;
float fees;
struct date dob;

} s;

The structure date has been made as the member of structure student. To access
the elements of the structure date, which is the part of another structure, we can
the statements lik,

s.dob.dd;

s.dob.mm;

s.dob.yy;

Module – 2

Array of structures

A group of structures may be organized in an array resulting in an array of
structures. Each element in the array is a structure.

Let us now consider a problem where we need to store data of 100 students.
Here we would be required to use 100 different structure variables from s1 to

6

s100, which is definitely not very convenient. A better approach would be to use
an array of structures. Let us now go through a program segment that shows how
to use an array of structures.

………….
struct student
{

int rollno;
float fees;
char division;

} s[100];

Here we define an array of 100 structures. Each structure variable s[0], s[1],….,
s[100] contains structure as its values. The members can be accessed as

S[0].rollno
S[1].fees
.
.
.
S[100].rollno
S[100].fees

Now let us see a program segment that reads and writes the above defined array
of structure.

int i;

for (i = 0 ; i <= 99 ; i++)
{

printf ("\nEnter roll_no, fees and division ") ;
scanf ("%d %f %c", &s[i].rollno, &s[i].fees, &s[i].division) ;

}
for (i = 0 ; i <= 99 ; i++)

printf ("%d %f %c", s[i].rollno, s[i].fees, s[i].division) ;
…………..

Pointer to structure
A pointer is helpful to create a structure dynamically. A group of structures may
also be created dynamically using a pointer. A pointer to a structure is similar to a
pointer to as an ordinary variable. It is created in the same way that a pointer to
an ordinary variable is created. For example,

typedef struct stud
{

Int regno;
char name [20];
char result[10];

} STUDENT;

7

Declares a structure STUDENT. The definition

STUDENT *sp;
Creates a pointer variable sp which points to the structure STUDENT. After the
creation of the pointer variable, it should be assigned with a suitable pointer value.
For example,

sp= (STUDENT *)malloc(sizeof(int) + 20 + 10);

assigns a pointer to a block of memory large enough to store an integer and 30
characters which are members of the structure. It is very tedious to calculate the
size of the structure in this way if the members are more. The operator sizeof may
be used to find the size of a structure as given below.

sp=(STUDENT *)malloc(sizeof(STUDENT));

Observe the cast operator to convert the generic pointer returned by the function
malloc() into a pointer to the structure STUDENT. After assigning the appropriate
pointer value, the expressions (*sp).regno and (*sp).name may be used to ac-
cess the first two members of the structure. An alternate notation is also provided
in C for pointer to structure. The operator -> (minus sign immediately followed by
>) can be used to refer to a member. Now, (*sp).regno can be written as sp-
>regno and (*sp).name can be written as sp->name.

Module – 3

Structure and function

A structure can also be used in functions. While using the same structure in
different functions, it is essentials to pass the structure as an argument. C
supports the passing of structure values as arguments to functions. The structure
variable or a pointer to the structure may be passed.
In the first method, we pass each member of structure as an actual argument of
the function call. The actual arguments are then treated independently like
ordinary variables. This is the most elementary method and becomes
unmanageable and inefficient when the structure size is large. When the structure
variable is passed the changes made in the members of the structure are
available only in the called function (call by value)
In the second method, we pass the pointer to the function. Here we pass the copy
of the entire structure to the called function. The function is working on a copy of
the structure, any changes to structure members within the function are not
reflected in the original structure (effect of pass by reference).

Let us now consider an example for passing entire structure to a function.

Example : passing entire structure to a function

struct student

8

{
char name[20];
int rollno;
float fees;

};

void display(struct student s)
{

printf(“Name : %s” ,s.name);
printf(“Rollno: %d” ,s.rollno);
printf(“Fees : %f” ,s.fees);

}

#include<stdio.h>
main()
{

struct student s = {“Arun”,12,3500};
display(s);

}

Self referential structures

It is a structure which contains one member which is a pointer of its own type.
For example,

struct student

{
char name[20];
int rollno;
float fees;
struct student *next;

};

Here the structure contains an element which is a pointer to a structure of the
same type called next. There for this is a self referential structure. Self referential
structures are very useful in applications that involve linked data structures, such
as list and trees. Here the declaration, assignment of pointer value and accessing
the data using the pointer must be done appropriately.

Module – 4

9

Unions

A union can be considered as a special type of structure. It is a derived data type
that permits different types of data items in which each member shares the same
block of memory. A union behaves as a storage buffer capable of holding different
data types. In structure each member has its own storage location, whereas all
the members of a union use the same location. That is even though the union
may contain many members of different types, it can handle only one member at
a time. Like structure, a union can be declared using the keyword union. For
example,

union mixed_type /* union declaration */
{

int a;
float b;
char c;

};

union mixed_type mt; /* union definition */

This declares a variable mt of type union mixed_type. The union contains three
members, each with a different data type including mt.a, mt.b and mt.c. The
variable mt will be large enough to hold the largest of the three data types.
However we can use only one of them at a time. This is due to the fact that only
one location is allocated for a union variable, irrespective of its size.

Initialization of a union variable is restricted so that the value of its first member
can only be initialized. For example,

union mixed_type
{

int a;
float b;

} mix=5; /*initialization*/

Here a float value 5.0 would be stored in the member mix.a.

Unions are often used as members of structures and structures are used as
members of unions. An array of unions, a pointer to a union, functions using a
union are also possible in C. Also, a nested union and a self-referential union can
be used. The notation for accessing a member of a union is identical to that of a
structure.

Let’s summarize what we have discussed in this session ,

A structure is a derived data type used to organize a group of related data items
having different data types. The syntax of the structure declaration differs from
that of a structure definition. The declaration informs the compiler about the
prototype of the structure, whereas the definition creates the structure variable.
The declaration alone does not reserve space, whereas the definitions allocate

1
0

space for storing the members. The members of the structure are accessed by
the structure member operator, denoted by a dot (.).

A nested structure allows another structure as its member. An array of structures
is used to organize a group of structures. A pointer to a structure is helpful in the
creation and manipulation of a structure or a group of structures. To access a
member using a pointer to structure, the operator -> is used. A self-referential
structure is possible by having a member of a structure as a pointer to itself.
A union is similar to a structure, except that only one member may be stored at a
time in a union variable. Certain programs may be written using unions to
conserve memory.

Please try to solve these Assignments.

1. What are structures? Differentiate a structure from an array.

2. Explain how structures are defined in C and how they are passed to func-

tions?

3. What do a nested structure and an array of structures mean?

4. Differentiate between a structure and an union with respect to allocation of

memory by the compiler. Give suitable examples.

5. Write a C program using a structure to print the mark list for a class of 30

students studying 5 different subjects using separate function for input and

output.

Here are some books for your Reference.

1.B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2/e,
Prentice-Hall, 1988.

2.Yashavant Kanetkar; Let us C, 10th Edn.,BPB Publications, New Delhi, 2010.

3.Greg M Perry, Absolute Beginners' guide to C, 2/e SAMS publishing, 1994.

Hope now you are fascinated with the C language and interested in writing C

programs. Wish you all good luck. Bye.

1
1

