
POINTERS IN C

PART I

Dear Friends,

Module – 1

Introduction

Pointers play an important role in the C language and it seems to be a new

concept for the beginners. Pointers are simple to use, provided the basic concept is

understood properly. Programs can be written efficiently and compactly with the help of

pointers but its careless use courses unexpected errors and difficulties in the program

execution. We have divided the topic in to two sessions.

Before coming to pointers let us see the data representation in computer memory. The

smallest piece of data in a computer memory is known as a bit, which represents 0 or

1. Bits are grouped in to bytes. Each byte in the computer memory is called a memory

location or memory cell. Computer memory consists of series of a series of consecutive

memory locations. The number attached to a memory location is called the memory

address of that location.

The number of bytes required for storing the value of each data type is system

dependent. When more than one memory locations are used for holding a value, the

starting address of that storage is considered as the address of that value. A data type

is associated with a memory location referred to by a variable in a C program. Based on

the data type, the compiler interprets the content of the memory location allotted for the

variable. Generally one byte of memory is used for character type data storage , 2 bytes

for integer type data storage, 4 bytes for float data storage and 8 bytes for double type

data storage.

5434

2005 5434

 p

What is a pointer?

A pointer value or pointer is a data object that refers to a memory location, which is an

address. It resides in the memory location, which is represented by the pointer variable.

Thus a pointer variable may contain the address of another variable or any valid ad-

dress in the computer memory. That’s why a pointer is also called an address variable.

Pointers are much used in C, partly because they are sometimes the only way to ex-

press a computation, and partly because they usually lead to more compact and effi -

cient code.

Observe the content of the pointer variable p in the memory location in the figure shown

in screen. It holds a valid address 5434 from the memory where a data object may be

stored.

Representation of a pointer variable

Module – 2

Understanding pointers

Consider the declaration,

int i = 5;

This declaration tells the C compiler to:

(a) Reserve space in memory to hold the integer value.

(b) Associate the name i with this memory location.

(c) Store the value 5 at this location.

We can understand more through the following program:

main()

{

int i = 5 ;

printf ("\nValue of i = %d", i) ;

printf ("\nAddress of i = %u", &i) ;

}

The output of the above program would be:

Value of i = 5

Address of i = 75638

We may represent i’s location in memory by the following memory map.

i location name

 value at location

 75638 location number

We can see that the computer has selected memory location 75638 as the place to

store the value 5. The location number 75638 is not a number to be relied upon,

because some other time the computer may choose a different location for storing the

value 3. The important point is, i’s address in memory is a number.

In the above printf() statement. ‘&’ used in this statement is ‘address of’ operator. The

expression &i returns the address of the variable i, which in this case it is 75638. Since

75638 represents an address, there is no question of a sign being associated with it.

5

Hence it is printed out using %u, which is a format specifier for printing an unsigned

integer. We have been using the ‘&’ operator all the time in the scanf() statement.

The other pointer operator available in C is ‘*’, called ‘value at address’ operator. It

gives the value stored at a particular address. The ‘value at address’ operator is also

called ‘indirection’ operator.

The indirection operator * is used to access the value pointed by its operand. The

operand must be a pointer variable or a pointer expression. If p is a pointer variable,

then *p is and expression refereeing to a data object. The actual address in which the

data object is stored is represented by a pointer variable. The stored data item is

accessed indirectly using the expression *p. Actually the name indirection is taken from

low level programming to refer to the indirect addressing mode. The direct value of the

pointer variable, say p, is an address, whereas *p is the indirect value of p.

Consider the following statements for the illustration of the expressions using * and

values.

int num = 15, *p;

p=&num

From the example it is clear that *&num is equivalent to num and also *p is equivalent to

num as the address of num is assigned to p. The three expressions num, *&num and *p

represent the same storage where the value 15 is stored. It is not necessary to enclose

&num within parenthesis in *&num, since unary operators associate from right to left. It

is also possible to have expressions like &*&num, &*&*&num, *&*&*&num etc.

Look at the output of the following program:

main()

{

int i = 5 ;

printf ("\nAddress of i = %u", &i) ;

printf ("\nValue of i = %d", i) ;

printf ("\nValue of i = %d", *(&i)) ;

}

The output of the above program would be:

Address of i =75638

Value of i = 3

Value of i = 3

Note that printing the value of *(&i) is same as printing the value of i.

The expression &i gives the address of the variable i. This address can be collected in

a variable, by saying,

j = &i ;

But remember that j is not an ordinary variable like any other integer variable. It is a

variable that contains the address of other variable (i in this case). Since j is a variable

the compiler must provide it space in the memory. Once again, the following memory

map would illustrate the contents of i and j.

 i j

 75638 79000

As you can see, i’s value is 5 and j’s value is i’s address. So we need to declare j as a

pointer variable so as to use in the program. The general format for declaration of

pointer variable is

5 75638

data_type * var1, *var2,……*varn;

Where data_type refers to the data type of the value stored in the address given by the

pointer variable and var1,var2,…..varn are pointer variables.

For example in the previous example, we can’t use j in a program without declaring it.

And since j is a variable that contains the address of i, it is declared as,

int *j ;

This declaration tells the compiler that j will be used to store the address of an integer

value. In other words j points to an integer. How do we justify the usage of * in the

declaration,

int *j ;

Let us go by the meaning of *. It stands for ‘value at address’. Thus, int *j would mean,

the value at the address contained in j is an int.

Here is a program that demonstrates the relationships we have been discussing.

#include<stdio.h>
main()

{

int i = 5 ;

int *j ;

j = &i ;

printf ("\nAddress of i = %u", &i) ;

printf ("\nAddress of i = %u", j) ;

printf ("\nAddress of j = %u", &j) ;

printf ("\nValue of j = %u", j) ;

printf ("\nValue of i = %d", i) ;

printf ("\nValue of i = %d", *(&i)) ;

printf ("\nValue of i = %d", *j) ;

}

The output of the above program would be:

Address of i = 75638

Address of i = 75638

Address of j = 79000

Value of j = 75638

Value of i = 5

Value of i = 5

Value of i = 5

Work through the above program carefully, Everything we say about C pointers from

here onwards will depend on your understanding these expressions thoroughly.

We will now see some valid pointer variable declarations

int *ptr;

Here ptr is pointer variable to store the address of an integer value.

float *fraction, *epsilon;

 Here fraction and epsilon are pointer variables which points to float values

short *sptr;

Here sptr is a pointer to a short integer.

char *cptr;

Here cptr is a pointer to a character and

long *lptr;

Here lptr is a pointer to a long integer.

It is also possible to combine the pointer variables and other ordinary variables of the

same data type in a single declaration as shown in the screen.

int a, *ap;

Here a is an integer variable and ap is a pointer variable which points to a integer value.

float *xp, x, y;

Here xp is pointer variable which points to a float value, x and y are simply float

variables.

char c1,c2,*c1p,*c2p;

Here c1, c2 are character variables and c1p and c2p are pointer variables which points

to char values.

User defined pointer variables can be created with typedef statements. The following

example show how a typedef statement can be used to declare a pointer variable num

pointing to int data type (int *num)

typedef int NUMBER; OR typedef int * NUMBER;

NUMBER *num; NUMBER num;

Module – 3

Incrementation and decrementation of pointers

It is possible to increment and decrement pointer variables using ++ and - - operators

respectively. A pointer expression may be preceded by and or followed by ++ or - -. In

such cases, the operators &, * and ++ and – are involved. While evaluating these

expressions, it is very important to remember the operator precedence and associativity

of the operations. The operators &, *, ++ and -- have same precedence level and the

evaluation is carried out from right to left. Consider the statements,

int *p, x=20;

p=&x;

++ *p;

*p++;

According to the first two statements, the address of the variable x is assigned to the

pointer variable p. Since x=20, the value of *p is also 20. The statement ++*p; has two

operators ++ and *. Since both the operators have the same precedence level,

associativity is applied resulting in right to left evaluation. Hence the evaluation

increments *p by 1 (that is 20+1=21).

The statement *p++; is also evaluated from right to left. Since a post increment operator

is used, the effect of the increment is available only after the execution of *p++;. Hence

for the evaluation of *p, the value of p before increment is used yielding the output 21.

After executing the statement *p++; the value of p is p+1 (p is incremented by 2bytes

as 2bytes are assumed to store an int value). The comiler takes care of the scaling

factor based on the data type it points to while incrementing the pointer. If a pointer

points to float, then incrementing it gives an offset of 4 bytes.

The expression,

++*p*2 increments what p points to by 1 and the incremented value is multiplied by 2.

Now let us summarize the permissible and not permissible pointer operations.

Pointer operations – permissible

 A pointer can have the address of an ordinary variable and its content(ptr=&v).

 The content of a pointer can be copied to another pointer variable provided both

pointers are of same type.(ptr=ptr1)

 A pointer variable can be assigned a null(zero) value. (e.g ptr=NULL, where

NULL is a symbolic constant that represents the value 0).

 An integer quantity can be added to or subtracted from a pointer variable. (e.g

ptr+1, ++ptr, ptr-3, ptr- - etc).

Pointer operations – not permissible

 Two pointer variables cannot be added.

 Pointer variable cannot be multiplied by a constant.

 Two pointer variables cannot be divided or multiplied.

Module – 4

Use of pointers in arrays

In C, there is a strong relationship between pointers and arrays, strong enough that

pointers and arrays should be discussed simultaneously. Any operation that can be

achieved by array subscripting can also be done with pointers. The pointer version will

in general be faster but, at least to the uninitiated, somewhat harder to understand.

We know that the declaration

int a[10];

defines an array of size 10, that is, a block of 10 consecutive objects named a[0],

a[1], ...,a[9] as shown in the figure on the screen.

The notation a[i] refers to the i-th element of the array. If pa is a pointer to an integer,

declared as

int *pa;

then the assignment

pa = &a[0];

Sets pa to point to element zero of a; that is, pa contains the address of a[0] as shown

in the screen.

Now the assignment

x = *pa;

will copy the contents of a[0] into x.

If pa points to a particular element of an array, then by definition pa+1 points to the next

element, pa+i points i elements after pa, and pa-i points i elements before. Thus, if pa

points to a[0],

*(pa+1)

refers to the contents of a[1], pa+i is the address of a[i], and *(pa+i) is the contents of

a[i].

These remarks are true regardless of the type or size of the variables in the array a. The

meaning of ``adding 1 to a pointer,'' and by extension, all pointer arithmetic, is that pa+1

points to the next object, and pa+i points to the i-th object beyond pa.

The correspondence between indexing and pointer arithmetic is very close. By defini-

tion, the value of a variable or expression of type array is the address of element zero of

the array. Thus after the assignment

pa = &a[0];

pa and a have identical values. Since the name of an array is a synonym for the location

of the initial element, the assignment pa=&a[0] can also be written as

pa = a;

Rather more surprising, at first sight, is the fact that a reference to a[i] can also be writ-

ten as *(a+i). In evaluating a[i], C converts it to *(a+i) immediately; the two forms are

equivalent. Applying the operator & to both parts of this equivalence, it follows that &a[i]

and a+i are also identical: a+i is the address of the i-th element beyond a. As the other

side of this coin, if pa is a pointer, expressions might use it with a subscript; pa[i] is iden-

tical to *(pa+i). In short, an array-and-index expression is equivalent to one written as a

pointer and offset.

There is one difference between an array name and a pointer that must be kept in mind.

A pointer is a variable, so pa=a and pa++ are legal. But an array name is not a variable;

constructions like a=pa and a++ are illegal.

When an array name is passed to a function, what is passed is the location of the initial

element. Within the called function, this argument is a local variable, and so an array

name parameter is a pointer, that is, a variable containing an address. We can use this

fact to write a program which computes the length of a string.

/* strlen: return length of string s */

int strlen(char *s)

{

int n;

for (n = 0; *s != '\0', s++)

n++;

return n;

}

Summary

Let us now summarize the points that we discussed in the session.

1. C uses bytes as the basic units of memory. The bytes requires to store a value

depend on the data type of the object used. Each byte is numbered by an

address for its reference. It is possible to directly access the addresses in C by

using pointers.

2. A pointer is a valid address, which is stored in a pointer variable.

3. The pointer type and the memory that it refers should be same. That is to hold

the address of type integer memory we have to create an integer pointer.

4. There are two unary operations that are exclusively used in connection with

pointers. They are

a. Address of operator , denoted by & (ampersand) and

b. Indirection or dereferencing operator, denoted by * (asterisk)

Each of the above operators must precede its operand. Pointer expressions are

formed by using these operators & and * with their respective operands.

5. The address of operator & returns the address of its operand. The operand must

be a named region of storage (like integer variable, array variable, pointer

variable etc.) for which a value may be assigned. It cannot be a constant or

expression or register type variable.

6. We can use the pointer to retrieve data from memory or to store data into the

memory to which it points to. Both operations are classified as pointer

dereferencing. It is also called as indirection operator ‘*’.

int num = 5, new, *ptr;

ptr = # /* ptr holds the address of variable num*/

new = *ptr; /* copies the content of num to new using

 pointer */

7. After assigning proper values to the pointer variables, it is possible to increment

or decrement the pointer variables using ++ and – operators respectively.
8. The array variable represented by a subscript expression may also be written

using a pointer expression. The representation of the pointer expression helps in

faster and easier execution.
9. Character arrays may also be manipulated using pointers. String constants

return a pointer that can be used in pointer expressios.

Please try to completely solve this assignment.

1. What are pointers a? Are they integers? Explain with an example.

2. How is a pointer variable declared and what are the operators exclusively used

with pointers?

3. Is the name of an array a pointer? Why is only the address of the first element of

an array necessary in order to access the whole array?

4. How are single and two dimensional arrays represented using pointers? Explain.

5. Write a program using pointers to read in an array of integers and print the ele-

ments in reverse order.

6. Write a program to concatenate two strings using pointers.

Here is some books for your Reference

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-

Hall, Englewood Cliffs, New Jersey, 1978.

2. Yashavant Kanetkar; Let us C, BPB Publications, New Delhi.

3. Greg Perry, Absolute Beginners' guide to C, SAMS publishing, April 1994.

Hope you start enjoying the lessons of C and interested in writing C programs. There

are many more other features of pointers in C are remaining to explore. So let us wait

for the coming sessions and till then bye.

