
CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

File Handling in C
1. Introduction to File handling
A file can be thought of as a collection of bytes stored on a secondary storage

device, which is usually called a disk.

The collection of bytes could form a text document with characters, words, lines,

paragraphs and pages, or a database with its fields and records, or a graphical

image made of pixels, or some other data.

2. What is file handling
File handling in C enables us to create, update, read, and delete the files stored on

the local file system through our C program.

File handling in C refers to the task of storing data in the form of input or output

produced by running C programs in data files, namely, a text file or a binary file for

future reference and analysis.

3. Why We need Files
We need files during programming due to following reasons

✓ When a program is terminated, the entire data is lost. Storing in a file will

preserve your data even if the program terminates.

✓ If you need to enter a large number of data, it will take a lot of time to enter

them all. However, if you have a file containing all the data, you can easily

access the contents of the file using a few commands in C.

✓ You can easily move your data from one computer to another without any

changes.

The meaning attached to a particular file dependent on what we do with the file. It is

determined by the data structures and operations used by a program to process the

file.

Irrespective of the data they contain, or the methods used to process them, all files

have certain common properties.

1. Every file has a name.

2. The file must be opened before we start processing it. Conceptually,

until a file is opened no operation can be performed on the file. (When

it is opened, we may access it at its beginning or end. To prevent

accidental misuse, at the time of opening the file we must tell the

system what we intend to do with the file – read, write, or append.)

3. It must be closed when it is done with. (When we are finished using the

file, we must close it. If the file is not closed, the operating system

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

cannot finish updating its own housekeeping records used for file

management, and data in the file may be lost.)

4. The third one is about the actual operations on the file. In between the

opening and closing of a file, we can write into, or read from, or append

to it.

4. Types of Files
Essentially there are two kinds of files that programmers deal with – text files and
binary files.

4.1 Text File
✓ Text files are used to store character data.
✓ A text file consists of a stream of characters that can be processed

sequentially. This sequential processing is possible only in the forward
direction. Because of this restriction, a text file is usually opened for only one
kind of operation (read, write or append) at any given time.

✓ Similarly, since text files only process characters, they can only read or write
data one character at a time. There are functions that read or write a string or
a line of text, but these functions also essentially process the data one
character at a time.

4.2 Binary Files

✓ Instead of storing data in plain text, they store it in the binary form (0's and
1's).

✓ They can hold a higher amount of data, are not readable easily, and provides
better security than text files.

✓ The major difference is in the way the file is processed.
o Binary files can be processed sequentially or using direct access,

depending on the needs of the application. In C, processing a file with
a direct access involves moving the current file position to an
appropriate place in the file before reading or writing data.

o Since it is possible to have access that is not sequential, binary files
are generally opened for read and write operations simultaneously. but
are rarely found in applications that process text files.

The operations performed on binary files are similar to text files. In fact, the same
functions are used for reading and writing operations on files in C, for both text and
binary files. We make the distinction between text and binary only at the time of
opening a file, when we have to indicate the type of file being processed.

5. File Operations
In C, you can perform four major operations on files, either text or binary:

✓ Creating a new file or Opening an existing file
✓ Closing a file
✓ Reading from (Input) the file

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

✓ writing (output) information to a file

6. working with file

When working with files, you need to declare a pointer to structure of type FILE.
This declaration is needed for communication between the file and the program.

FILE *fp;

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to the

opened (or created) file.

7. Opening in file or creating a file

Before we can write to a file, we must open it. What this really means is that we must
tell the system that we want to write to a file and what the filename is.

The fopen() function is used to create a new file or to open an existing file.

The syntax for opening a file in standard I/O

FILE *fopen (const char *filename, const char *mode)

or

FILE *ptr = fopen("fileopen","mode");

fp – file pointer to the structure data type “FILE”.
filename – the actual file name with full path of the file. The filename is any

 valid filename that the operating system can understand. It is
 enclosed in double quotes.

mode – refers to the operation that will be performed on the file.
 Example: r, w, a, r+, w+ and a+.

Mode can be of following types,

mode Description

r opens a text file in reading mode

w opens or create a text file in writing mode.

a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ opens a text file in both reading and writing mode

a+ opens a text file in both reading and writing mode

rb opens a binary file in reading mode

wb opens or create a binary file in writing mode

ab opens a binary file in append mode

rb+ opens a binary file in both reading and writing mode

wb+ opens a binary file in both reading and writing mode

ab+ opens a binary file in both reading and writing mode

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

Using the r indicates that the file is assumed to be a text file. Opening a file for
reading requires that the file already exists. If it does not exist, the file pointer
variable will be set to NULL by the fopen() function.

When a file is opened for writing, it will be created if it does not already exist and it
will be reset if it does, resulting in the deletion of any data already there. Using the w
indicates that the file is assumed to be a text file.

When a file is opened for appending, it will be created if it does not already exist and
it will be initially empty. If a file exists with that name, the data input point will be
positioned at the end of the present data so that any new data will be added to any
data that already exists in the file. Using the a indicates that the file is assumed to be
a text file.

8. Closing a File
One should always close a file whenever the operations on file are over. It means
the contents and links to the file are terminated. This prevents accidental damage to
the file.
The fclose() function is used to close an already opened file.

General Syntax :

 int fclose(FILE *fp);

• The fclose function takes a file pointer as an argument and closes the file.

• It returns zero on success, or EOF if there is an error in closing the file.

• This EOF is a constant defined in the header file stdio.h.

• After closing the file, the same file pointer can also be us with other files.

• In 'C' programming, files are automatically close when the program is
terminated. Closing a file manually by writing fclose function is a good

programming practice.

Example:

FILE *fp;
fp = fopen ("data.txt", "r");
fclose (fp);

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

9. Writing to a File

In C, when you write to a file, newline characters '\n' must be explicitly added.

The stdio.h library offers the necessary functions to write to a file:

• fputc(char, file_pointer): It writes a character to the file pointed to by

file_pointer.

• fputs(str, file_pointer): It writes a string to the file pointed to by

file_pointer.

• fprintf(file_pointer, str, variable_lists): It prints a string to the file

pointed to by file_pointer. The string can optionally include format specifiers and a
list of variables variable_lists.

The program below shows how to perform writing to a file:

9.1 fputc() Function:

• It writes a character to the file pointed to by file_pointer.

• Syntax
fputc(char, file_pointer):

#include <stdio.h>
int main() {

 int i;
 FILE * fptr;
 char fn[50];
 char str[] = "Sir Padampat Singhania University\n";
 fptr = fopen("test.txt", "w"); // "w" defines "writing mode"

 for (i = 0; str[i] != '\n'; i++) {
 /* write to file using fputc() function */
 fputc(str[i], fptr);
 }
 fclose(fptr);
 return 0;

 }

The above program writes a single character into the test.txt file until it reaches the
next line symbol "\n".

• In the above program, we have created and opened a file called fputc_test.txt
in a write mode and declare our string which will be written into the file.

• We do a character by character write operation using for loop and put each
character in our file until the "\n" character is encountered then the file is
closed using the fclose() function.

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

9.2 fputs() Function:
• It writes a string to the file pointed to by file_pointer.

• Syntax

fputs(str, file_pointer):

#include <stdio.h>

int main() {

 FILE * fp;

 fp = fopen("fputs_test.txt", "w+");

 fputs("Sir Padampat Singhania University,", fp);

 fputs("Department of Computer Science and Engineering\n", fp);

 fputs("CS-1001(Strucutred Programming Approach\n", fp);

 fclose(fp);

 return (0);

 }

In the above program, we have created and opened a file called fputs_test.txt in a

write mode.

After we do a write operation using fputs() function by writing three different strings

Then the file is closed using the fclose function.

9.3 fprintf()

• It prints a string to the file pointed to by file_pointer. The string can optionally
include format specifiers and a list of variables variable_lists.

• Syntax

fprintf(file_pointer, str, variable_lists):

• Example

void main()

{

 char empname[20];

 int empno,salary,n=3,i;

 FILE *sfptr;

 ptr=fopen("file3","w");

 printf("\n Employee details \n");

 for(i=0;i<3;i++)

 {

 scanf("%d %s %d", &empno,empname,&salary);

 fprintf(ptr,"%d %s %d\n",empno,empname,salary);

 }

 fclose(ptr);

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

}

Above Program is reading three values(empno, empname, and salary from the

keyboard using standard input function scanf() and writing these 3 values in the

file file3(pointed by file pointer *ptr.)

10. Reading data from a File
There are three different functions dedicated to reading data from a file

• fgetc(file_pointer): It returns the next character from the file pointed to

by the file pointer. When the end of the file has been reached, the EOF is sent

back.

• fgets(buffer, n, file_pointer): It reads n-1 characters from the file

and stores the string in a buffer in which the NULL character '\0' is appended

as the last character.

• fscanf(file_pointer,conversion_specifiers, variable_adresses):

It is used to parse and analyze data. It reads characters from the file and

assigns the input to a list of variable pointers variable_adresses using

conversion specifiers. Keep in mind that as with scanf, fscanf stops reading a

string when space or newline is encountered.

10.1 fgetc() function
The fgetc() function reads a character from the input file referenced by fp. The

return value is the character read, or in case of any error, it returns EOF.

Syntax

int fgetc(FILE * fp);

Example

#include <stdio.h>
int main()
{
 /* Pointer to the file */
 FILE *fp1;
 /* Character variable to read the content of file */
 char c;

 /* Opening a file in r mode*/
 fp1= fopen ("C:\\myfiles\\newfile.txt", "r");

 /* Infinite loop –I have used break to come out of the loop*/
 while(1)
 {
 c = fgetc(fp1);
 if(c==EOF)
 break;
 else

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

 printf("%c", c);
 }
 fclose(fp1);
 return 0;
}

10.2 fgets() function

The functions fgets() reads up to n-1 characters from the input stream referenced

by fp. It copies the read string into the buffer buf, appending a null character to

terminate the string.

Syntax

char *fgets(char *buf, int rec_len, FILE *fpr)

buf: Array of characters to store strings.
rec_len: Length of the input record.
fpr: Pointer to the input file.
Example

#include <stdio.h>
int main()
{
 FILE *fpr;
 /*Char array to store string */
 char str[100];
 /*Opening the file in "r" mode*/
 fpr = fopen("C:\\mynewtextfile.txt", "r");

 /*Error handling for file open*/
 if (fpr == NULL)
 {
 puts("Issue in opening the input file");
 }

 /*Loop for reading the file till end*/
 while(1)
 {
 if(fgets(str, 10, fpr) ==NULL)
 break;
 else
 printf("%s", str);
 }
 /*Closing the input file after reading*/
 fclose(fpr);
 return 0;
}

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH

CS-1001 - STRUCUTRED PROGRAMMING APPRROACH HARISH TIWARI

10.3 fscanf() function

• It is used to parse and analyze data.

• It reads characters from the file and assigns the input to a list of variable

pointers variable_adresses using conversion specifiers.

• Keep in mind that as with scanf(), fscanf() stops reading a string when

space or newline is encountered.

Syntax

int fscanf(FILE *fp, const char *format, ...)

Example

#include<stdio.h>

#include<conio.h>

struct emp

{

 char name[10];

 int age;

};

main()

{

 struct emp e;

 FILE *p,*q;

 p = fopen(“one.txt”, “a”);

 q = fopen(“one.txt”, “r”);

 printf(“Enter Name and Age”);

 scanf(“%s %d”, e.name, &e.age);

 fprintf(p,{“%s %d”, e.name, e.age);

 fclose(p);

 do

 {

 fscanf(q,”%s %d”, e.name, e.age);

 printf(“%s %d”, e.name, e.age);

 }

 while(!eof(q));

 getch();

}

