
File Management in C

Part - 1

Module – 1

Hi all, welcome to the first section on manipulating data files using C. In this section

we will learn the differences between text and binary files, and how to write C

programs that read from, and write into text files.

File input and output

A file can be thought of as a collection of bytes stored on a secondary storage

device, which is usually called a disk. The collection of bytes could form a text

document with characters, words, lines, paragraphs and pages, or a database with

its fields and records, or a graphical image made of pixels, or some other data.

The meaning attached to a particular file is dependent on what we do with the file. It

is determined by the data structures and operations used by a program to process

the file. For example, it is possible that an image file is read and displayed by a

program designed to process textual data. In that case the file becomes just a text

file, and the text is unlikely to make any sense.

Irrespective of the data they contain or the methods used to process them, all files

have certain common properties. One, every file has a name. Two, the file must be

opened before we start processing it, and it must be closed when it is done with. The

third one is about the actual operations on the file. In between the opening and

closing of a file, we can write into, or read from, or append to it.

Conceptually, until a file is opened no operation can be performed on the file. When

it is opened, we may access it at its beginning or end. We will have to move through

the file in order to gain access to an intermediate position. To prevent accidental

misuse, at the time of opening the file we must tell the system what we intend to do

with the file – read, write, or append.

1

When we are finished using the file, we must close it. If the file is not closed, the

operating system cannot finish updating its own housekeeping records used for file

management, and data in the file may be lost.

Essentially there are two kinds of files that programmers deal with – text files and

binary files. Let us learn more about these two classes of files and the differences

between them.

Text files

Text files are used to store character data. A text file consists of a stream of

characters that can be processed sequentially. This sequential processing is

possible only in the forward direction. Because of this restriction, a text file is usually

opened for only one kind of operation (read, write or append) at any given time.

Similarly, since text files only process characters, they can only read or write data

one character at a time. There are functions that read or write a string or a line of

text, but these functions also essentially process the data one character at a time.

You may recall that the same was the case with scanf, printf, gets or puts functions

that we learned in the module on input and output in C.

A text stream in C has some special properties. Depending on the requirements of

the operating system, a newline character (or a backslash n) may be converted to a

combination of a carriage-return followed by moving to next line when we are writing

into a file. If we did not have the carriage return, the new line would begin

somewhere in the middle of the line. Similarly, a carriage-return and next line

combination gets converted to a newline character if we are reading from a file.

There can be other character conversions also, that satisfy the storage requirements

of the operating system. These translations occur transparently and they occur

because the programmer has signalled the intention to process a text file.

Binary files

As far as the operating system is concerned, a binary file is no different from a text

file. Both are just a collection of bytes. In C a character uses exactly one byte of

2

data. Hence a binary file can also be considered a character stream, but there are

some essential differences.

1. Since we cannot assume that the binary file contains text, there will not be

any special processing of the data. Each byte of data is written into the disk or

read from the disk “as it is”.

2. It is left to the programmer how to interpret the data in a binary file. It could be

an image, or a video or audio file, or an encrypted message, or anything else.

C does not place any constructs on the file. It may be read from, or written to,

in any manner chosen by the programmer. The file name extensions could

help the programmer in identifying what kind of data is placed in that file.

3. The third major difference is in the way the file is processed. Binary files can

be processed sequentially or using direct access, depending on the needs of

the application. In C, processing a file with a direct access involves moving

the current file position to an appropriate place in the file before reading or

writing data. Since it is possible to have access that is not sequential, binary

files are generally opened for read and write operations simultaneously. For

example, consider a database file. A record update operation will involve

locating the appropriate record, reading the record into memory, modifying it

in some way, and finally writing the record back to disk at its appropriate

location in the file. These kinds of operations are common while dealing with

binary files, but are rarely found in applications that process text files.

Here, let us note that it is possible to open and process a text file as binary data,

because a text file also just a collection of bytes. We do this when we need to get

non-sequential access to the file.

The operations performed on binary files are similar to text files. In fact the same

functions are used for read and write operations on files in C, for both text and binary

files. We make the distinction between text and binary only at the time of opening a

file, when we have to indicate the type of file being processed.

3

Module - II

Output to a Text File

Operations that output data to a text file are similar to the operations that output data

to a standard output device. The additional thing we have is a new variable, that is of

type a file pointer. Let us see an example. As before, we begin with the include

statement for stdio.h because the file operations are also input and output

operations, and are part of the standard inputs/outputs library.

#include "stdio.h"

main()

{

 FILE *fp; /* file pointer */

 char one_line[30];

 int index;

 fp = fopen("myfile.txt","w"); /* open for writing */

 strcpy(one_line, "This is a sample line.");

 for (index = 1; index <= 10; index++)

 fprintf(fp,"%s Line number %d\n", one_line, index);

 fclose(fp); /* close the file before ending program */

}

The type FILE (in capital letters) is used for a file variable and is defined in the

stdio.h file. It is used to define a file pointer for use in file operations. The standard

definition of C contains the requirement for a pointer to a FILE. The name of the file

pointer variable can be any valid variable name in C. In this program we have called

it fp.

Opening a file

Before we can write to a file, we must open it. What this really means is that we must

tell the system that we want to write to a file and what the filename is. We do this

with the 'fopen' function call in the first line of the program. The file pointer fp points

4

to the file and two arguments are required in the parentheses, the filename first,

followed by the file type.

The filename is any valid filename that the operating system can understand. It could

be in upper or lower case letters, or even a mix of the two. It is enclosed in double

quotes. For this example we have chosen the name myfile.txt. If we already have a

file with this name on our disk, and if we open it for writing, then its original contents

will be erased. If you don’t have a file by this name, the programme will create one.

It is possible to include a directory name with the filename. The directory must, of

course, be a valid directory otherwise an error will occur. Also, because of the way C

handles special characters in literal strings, the directory separation character, '/' (a

forward slash) or ‘\’ (a backward slash), must be preceded with a backward slash.

For example, if we work on DOS and the file is to be stored in the 'test' subdirectory,

then the filename should be entered as "test\\ (backslash, backslash) myfile.txt". If it

is on linux, we enter “test\/(backslash, forward slash) myfile.txt”. Here, 'test' is

understood as a subdirectory in the current directory. It is also possible to give

absolute, or complete, path names.

Read (r)

The second parameter to fopen function is the file attribute and it can be any of the

three letters, r, w, or a, in lower case. When an 'r' is used, the file is opened for

reading, a 'w' is used to indicate a file to be used for writing, and an 'a' indicates that

we want to append additional data to the data already in an existing file. Many C

compilers have other file attributes available; for a complete list, please check your

Reference Manual.

Using the r indicates that the file is assumed to be a text file. Opening a file for

reading requires that the file already exists. If it does not exist, the file pointer

variable will be set to NULL by the fopen function. This value can be checked by the

program before proceeding further.

Write (w)

5

When a file is opened for writing, it will be created if it does not already exist and it

will be reset if it does, resulting in the deletion of any data already there. Using the w

indicates that the file is assumed to be a text file.

Append (a)

When a file is opened for appending, it will be created if it does not already exist and

it will be initially empty. If a file exists with that name, the data input point will be

positioned at the end of the present data so that any new data will be added to any

data that already exists in the file. Using the a indicates that the file is assumed to be

a text file.

Writing to a file

The job of sending the output to a file is nearly identical to the output operations we

have already learned, that send the output to the standard output device. The only

differences are the new function names and the addition of the file pointer variable

as one of the function arguments. In our sample program, fprintf replaces the printf

function call, and the file pointer defined earlier is the first argument to this function.

The rest of the function call is identical to the printf statement.

Closing a file

To close a file, we just have to call the function fclose with the file pointer as the

single argument. In our example, it is not necessary to close the file because the

system will close all open files at the end of the execution of the programme, but it is

good programming practice to close all files in spite of the fact that they will be

closed automatically. fclose can become crucial if we are dealing with multiple files in

a single programme.

One could open a file in the write mode, close it after writing, and reopen it in read

mode, close it after reading from it, and open it again in say, write mode or in append

mode. Each time it is opened, one could use the same file pointer variable, or one

could use a different one. The file pointer is just a tool that is used to point to a file. It

is upto the programmer to decide what file it will point to. If we want multiple files

open at a time in the programme, we will need multiple file pointer variables.

6

If we compile and run this program, there will not be any output on the monitor

because the output is not sent to the standard output. In the directory where we run

the programme, there will be a file named myfile.txt. The programme creates this

text file named “myfile.txt” if it did not exist, and prints ten lines in the file. The first

part in each line is the string “This is a sample line.” It is followed by <space> Line

number <space>, followed by the line number.

Now we will see another example, that will illustrate how to output a single character

at a time to a file.

#include "stdio.h"

main()

{

 FILE *p1;

 char extra_line[35];

 int i, count;

 strcpy(extra_line, "More lines.");

 p1 = fopen("myfile.txt", "a"); /* open for appending */

 for (count = 1; count <= 10; count++) {

 for (i = 0; extra_line[i]; i++)

 putc(extra_line[i], p1); /* output a single character */

 putc('\n', p1); /* new line */

 }

 fclose(p1);

}

The program begins as usual with including stdio library, then defines some

variables including a file pointer. We have called the file pointer p1 this time, but it

could as well be called fp, or any other valid variable name.

We then define a string of characters to use in the output function using an strcpy

function. We open the file in append mode, because we want to keep the current

contents, and add some more lines at the end. The program has two nested for

loops. The outer loop is simply a count to ten so that we will go through the inner

7

loop ten times. The inner loop calls the function putc repeatedly until a character in

extra_line is detected to be a zero.

The putc function

'putc' is the function that outputs one character at a time to a file. It is similar to the

putchar function used to output one character at a time to the standard output. 'putc'

takes two arguments – the first is the character to be output, and the second

argument is the file pointer. It is interesting to note that the file pointer is the first

argument in the fprintf function, and it is the last argument in the putc function. There

are no specific reasons for this difference in position.

When we are done with printing the text line in the string 'extra_line', a new line is

added. This is also done with a call to putc function, with the \n(newline) character to

return the carriage and go to the next line.

When the outer loop has been executed ten times, the program closes the file and

terminates. If we compile and run this program, in the file named myfile.text one can

see that ten new lines were added to the end of the 10 lines that already existed. If

one runs it again, yet another 10 lines will be added.

Module - III

Reading from A Text File

Now let us learn to read from a file. We will see one program that begins with

including stdio.h. It then has some data definitions, and the file open statement that

opens the file in the 'read' mode with an r.

#include "stdio.h"

main()

{

 FILE *temp;

8

 char c;

 temp = fopen("myfile.txt", "r");

 if (temp == NULL) printf("File doesn't exist\n");

 else {

 do {

 c = getc(temp); /* get one character from the file */

 putchar(c); /* display it on the monitor */

 } while (c != EOF); /* repeat until EOF (end of file) */

 }

 fclose(temp);

}

Note that after fopen, we do a check by comparing the file pointer 'temp' with NULL,

to make sure that the file exists. If there is no file by that name, we can not read from

the file. If the file does not exist, the system will set the pointer equal to NULL. In that

case the programme just prints an error message and comes out. If the file pointer is

not null, we execute the rest of the program. Here we have one do-while loop in

which a single character is read from the file and output to the monitor until an end-

of-file character is encountered in the file. 'getc' is the function that is used to read

one character from the file. It is similar to getchar, but takes one file pointer

argument. The file is then closed and the program is terminated.

There is a potential problem here. The variable returned from the getc function is a

character, so we can use a char variable for this purpose. But if we use an unsigned

char however, it could run into trouble because a minus one is returned as an End of

file character by most of the C compilers. An unsigned char type variable can only

have the values of zero to 255, so it will return a 255 for a minus one. In that case

the program can never find the EOF and will therefore run forever, because the loop

termination condition is never satisfied. To prevent this, always use a char or int type

variable if we are checking for an EOF.

Another small issue is that we print out the data even before checking if we have

encountered an end-of-file character. We will discuss that, and other functions used

for file manipulations, in the next section on file management in C. Till then, bye.

9

